Printed Electronic Devices with Inks of TiS₃ Quasi-One-Dimensionalvan der Waals Material

Saba Baraghani, Jehad Abourahma, Zahra Barani, Amirmahdi Mohammadzadeh, Sriharsha Sudhindra, Alexey Lipatov, Alexander Sinitskii, Fariborz Kargar,* and Alexander A. Balandin*

Cite This: https://doi.org/10.1021/acsami.1c12948

ABSTRACT: We report on the fabrication and characterization of electronic devices printed with inks of quasi-one-dimensional (1D) van der Waals materials. The quasi-1D van der Waals materials are characterized by 1D motifs in their crystal structure, which allow for their exfoliation into bundles of atomic chains. The ink was prepared by the liquid-phase exfoliation of crystals of TiS₃ into quasi-1D nanoribbons dispersed in a mixture of ethanol and ethylene glycol. The temperature-dependent electrical measurements indicate that the electron transport in the printed devices is dominated by the electron hopping mechanisms. The low-frequency electronic noise in the printed devices is of 1/f-type with γ ~ 1 near-room temperature (f is the frequency). The abrupt changes in the temperature dependence of the noise spectral density and γ parameter can be indicative of the phase transition in individual TiS₃ nanoribbons as well as modifications in the hopping transport regime. The obtained results attest to the potential of quasi-1D van der Waals materials for applications in printed electronics.

KEYWORDS: quasi-1D materials, printed electronics, electron hopping conduction, low-frequency noise, TiS₃

INTRODUCTION

Recent years have witnessed a boost in printed electronics research and development as the technique facilitates mass production of electronic devices with lower cost and processing requirements. ¹,² The approach also enables manufacturing of large-scale and flexible devices by expanding the choices of substrates from conventional silicon to flexible surfaces such as paper and textiles.³⁻⁵ Inks with proper thermophysical properties are the crucial component of the printing industry. Different functional materials have been developed and used as the ingredients for inks employed by various printing techniques. The printed electronic devices can find applications in various areas. Flexible radio frequency tags,⁶ wearable electronics,⁷ organic light-emitting diodes,⁸ and organic solar cells⁹ are just a few examples of such applications. Despite the recent advancements, however, the list of available materials as ingredients for inks is limited. Little is known about the nature of the charge transport and electronic noise characteristics in printed electronic devices.

Some of the previously demonstrated inks are based on metal nanoparticles, such as Ag,⁹⁻¹⁰ Au,¹¹ and Cu,¹¹ carbon allotropes, such as graphene,¹² and carbon nanotubes,¹³ and nanowires, such as ZnO, dispersed in suitable solvents.¹⁴ Most recently, attention has turned to the layered quasi-two-dimensional (2D) van der Waals (vdW) materials, such as transition metal dichalcogenides (TMDs), including MoS₂,¹⁶⁻¹⁷ MoSe₂,¹ WS₂,¹⁸ and Bi₂Te₃.¹⁹ The class of quasi-2D vdW materials is promising for printing owing to relative ease of ink development. It is known that TMD materials have weak vdW bonding between structural units, allowing for their exfoliation into flexible quasi-2D layers. The inks of quasi-2D vdW materials can be prepared by liquid-phase exfoliation (LPE) process and dispersion of the exfoliated flakes in proper solvents. Additionally, TMDs exhibit tunable electronic and mechanical properties, which increase their value as ingredients for various functional inks.²⁰⁻²⁵ The class of layered vdW materials is not limited to quasi-2D materials only. Most recently, there has been a rapid emergence of interest in vdW materials with quasi-one-dimensional (1D) crystal structures.²⁶,²⁷ These materials are quasi-1D in the sense that they have strong covalent bonds along the atomic chains and vdW bonds or substantially weaker covalent bonds in directions perpendicular to the chains.²⁸⁻³⁰ Transition metal trichalcogenides (TMTs), with a chemical formula of MX₃, where M is a transition metal and X is a chalcogen, are a prominent group of quasi-1D vdW materials.²⁸⁻³¹ Examples of materials from this group include TiS₃⁻³²,³³ TaSe₂⁻³⁴,³⁵ ZrS₂⁻³⁵ NbS₂,³⁶ ZrTe₂,³⁷ and their solid solutions.³² Unlike TMDs, which exfoliate into quasi-2D...
Figure 1. Crystal structure, sample preparation, and characterization. (a) Schematic of the monoclinic crystal structure of TiS₃ from two viewpoints. The blue and yellow spheres represent the Ti and S atoms, respectively. The parallelogram demonstrates the unit cell of TiS₃. The side view in the right panel exhibits the quasi-1D nature of the atomic chains. (b) Optical photograph of the TiS₃ crystals used in this study. (c) Raman spectrum of exfoliated TiS₃ (black curve) at room temperature. The red curve shows the cumulative fitting of the experimental data by individual Gaussian functions. (d) TEM image of a representative solution exfoliated TiS₃ nanoribbon. A selected area electron diffraction (SAED) pattern recorded on this crystal is shown in the inset. (e) High-resolution TEM image of the same TiS₃ nanoribbon as in panel (d). (f) Schematic of the printing process of TiS₃ devices on top of gold contacts made with electron-beam lithography. The image in the dashed circle is the optical image of the actual TiS₃ device channel. Note the absence of the “coffee-ring” effect in the channel, confirming that the material is distributed evenly. The scale bar is 200 μm. The vial contains the liquid-phase exfoliated TiS₃ ink.

atomic planes, TMT crystals exfoliate into needle-like quasi-1D structures with high aspect ratios.²⁴,²⁶,⁴³,⁴⁸ Motivated by the recent developments in the quasi-1D vdW material synthesis and exfoliation, we demonstrate the feasibility of the use of such materials in the inks for printed electronics. The high aspect ratio and flexibility of the exfoliated bundles of quasi-1D atomic chains offer specific advantages: possibly better connectivity of the individual flakes and smaller loading fractions required to achieve electrical conduction.³⁹,⁴⁰

The intrinsic properties of quasi-1D vdW metals and semiconductors can add to the unique ink functionalities. The exfoliated quasi-1D TMTs have demonstrated exceptional electrical properties. For example, the bundles of TiS₃, TaSe₃, and ZrTe₃ have shown exceptionally high breakdown current densities of ~1.7, ~10, and ~100 MA/cm², respectively.³⁹ For the present study, we selected TiS₃.⁴²⁻⁵⁰ It is an n-type semiconductor with a band gap of ~1 eV at room temperature (RT).³³,³⁵,⁴⁹⁻⁵¹ The material undergoes a metal–insulator transition at temperature Tₘ ~ 220 K and exhibits metal-like properties at higher temperatures.⁵² Bulk TiS₃ whiskers were shown to have the RT Hall mobility of about 30 cm² V⁻¹ s⁻¹⁴⁶ and comparable exciton mobility of about 50 cm² V⁻¹ s⁻¹.⁵³ Theoretically, it has been suggested that a single quasi-1D monolayer of TiS₃ can have a mobility of ~10 000 cm² V⁻¹ s⁻¹, which is higher than that of quasi-2D MoS₂.⁵⁴ The experimentally observed mobilities in TiS₃ are considerably lower than the theoretical prediction, likely due to the polar-optical phonon scattering.⁵₂,⁵⁵ The few-layer TiS₃-based field-effect transistors (FETs) revealed mobilities of about 20–40 cm² V⁻¹ s⁻¹ and ON/OFF ratios of >10⁵;²⁴ these experimental values are comparable to or higher than those in FETs based on few-layer MoS₂, which are ~10 to 20 cm² V⁻¹ s⁻¹.³⁶,⁵⁷ On the other hand, it has been reported that TiS₃ exhibits charge-density-wave phase transitions at low temperatures.⁵⁸ This feature, in addition to all other promising electrical characteristics, has made TiS₃ an interesting material to experiment with innovative inks for printed electronics. The use of quasi-1D TiS₃ can add new functionalities to the ink. A report on the LPE and drop-casting of TiS₃⁵⁹ suggested that this material might be suitable for ink printing if proper solvent is found and printing parameters are optimized.

The crystal structure of monolayer TiS₃ with the P₂₁/m space group is presented in Figure 1a. Blue and yellow spheres represent the Ti and S atoms, respectively. The figure shows that TiS₃ has a highly anisotropic structure, in which quasi-1D chains of TiS₃ prisms are covalently bonded along the b-axis. These weakly interacting chains are assembled into vdW-stacked quasi-2D layers parallel to the ab plane of the crystal structure. A previous theoretical study has shown that the cleavage energies required for breaking weak interactions between the quasi-2D layers separated by the vdW gaps (Figure 1a) and between the quasi-1D chains within the layers are both comparable to the cleavage energy of graphene layers in graphite.³¹ Because of this, a cleavage of a TiS₃ crystal may realistically proceed along several different planes between the quasi-1D chains (such as (001), (100), (101), etc.), resulting in the formation of high aspect ratio exfoliated nanoribbons.³⁹

■ EXPERIMENTAL SECTION

Materials. TiS₃ crystals were synthesized by the direct reaction between metallic titanium and a sulfur vapor in a vacuum-sealed quartz ampule at 550 °C, as described in our previous works.²⁴,⁵³ Figure 1b shows an optical photograph of the as-grown TiS₃ crystals. Figure S1 presents the results of X-ray powder diffraction (XRD)
After each measurement, the samples were carefully inspected using power on the sample in the backscattering spectroscopy (Renishaw inVia). The measurements were performed exfoliation processing steps has been confirmed that the electron hopping transport mechanism. The different shades of colors in the plot indicate changes in the conductivity mechanism from nearest-neighbor hopping (NNH) to variable-range hopping (VRH). (d) Plot of ln(σ) versus T−1/2 for the printed channel at low temperatures. The experimental data agrees with the theoretical Efros–Shklovskii variable-range hopping model (dashed line).

Characterization of Exfoliated TiS3 Nanoribbons. The solution-exfoliated quasi-1D TiS3 nanoribbons were characterized by atomic force microscopy (AFM). A droplet of TiS3 dispersion in ethanol was placed on a Si/SiO2 and dried in air. The resulting TiS3 nanoribbons on a substrate were imaged using an atomic force microscope (Bruker Dimension Icon). The analysis of the AFM images was carried out using Gwyddion software.30 A representative AFM image is shown in Figure S2a. The solution-exfoliated quasi-1D TiS3 particles generally had ribbon-like shapes, which is representative of the quasi-1D structure of TiS3. The thickness of these nanoribbons varied from several hundred nm down to several nm, as illustrated by the AFM height profile in Figure S2b. The material quality after the exfoliation process was confirmed with Raman spectroscopy (Renishaw inVia). The measurements were performed in the backscattering configuration under a visible red laser (λ = 633 nm). The laser spot size on the sample was ~1 μm. The excitation power on the sample’s surface was varied between 0.1 mW and 2 mW. After each measurement, the samples were carefully inspected using optical microscopy. No laser-induced changes in the samples were detected.

Figure 1c presents the Raman spectrum of exfoliated TiS3 bundles at RT. The monoclinic structure of TiS3 has C2h point symmetry with irreducible representation of Γ = 8A_g + 4B_g + 8B_u + 4A_u. Four dominant Raman peaks identified at 174, 297, 367, and 556 cm−1 belong to A_g vibrational symmetries.30,31 The peak at 174 cm−1 is associated with rigid chain vibrations.31 The two peaks at 297 and 367 cm−1 are related to the internal out-of-plane vibrations involving each monolayer. The peak at 556 cm−1 is attributed to S–S diatomic motions.32 The three low-intensity peaks at 163, 276, and 401 cm−1 that shoulder to the dominant Raman peaks belong to B_g vibrational symmetries.33,34 The Raman spectra confirm the material quality after the exfoliation processing steps. To further confirm the high quality and crystallinity of the solution-exfoliated TiS3 nanoribbons, we studied them by transmission electron microscopy (TEM) (FEI Tecnai Osiris). TEM image of a representative TiS3 nanoribbon is shown in Figure 1d. A selected area electron diffraction (SAED) pattern recorded on this nanoribbon (see the inset in Figure 1d) confirms that it is highly crystalline. According to the indexing of the diffraction spots in this SAED pattern, the observed view corresponds to the ab plane of TiS3. The long axis of the crystal represents the crystallographic b direction of the quasi-1D chains, which is in agreement with the most expected exfoliation scenario.31 A high-resolution TEM image shown in Figure 1e, which was recorded for the same nanoribbon, confirms that this is the ab plane, because the observed interplanar distances perfectly match the a and b crystal structure parameters of TiS3 (a = 0.4948 nm, b = 0.3379 nm, c = 0.8748 nm, and the cant angle β = 97.62°; see the crystallographic analysis in ref 24).

Ink Preparation and Device Printing. A schematic of the printing procedure and device is shown in Figure 1f. The electrodes were fabricated by e-beam lithography, followed by the lift-off of Ti/Au (20-nm/200-nm) deposited by e-beam evaporation. The TiS3 channel was printed by a three-dimensional (3D) printer (Hyrel 30M) on top of the electrodes (see Figure S3). The thermophysical properties of the ink and proper selection of the metal nozzle size play a crucial role in the ink droplet formation, even spreading of the ink on the substrate, and subsequent drying. The nonuniform deposition of the material in printing often happens as a result of the “coffee-ring” effect that should be avoided by adjusting the concentration of the ingredients in the ink and surface modification of the substrate.64 The droplet formation behavior is characterized by...
As one can see in Figure 2b, the resistivity continuously decreases with increasing temperature. This is in contrast with the data on the electrical resistivity measurements of bulk and mechanically exfoliated few-layer TiS$_3$, devices reported over an extended temperature range of 4–400 K. In the latter case, the resistivity decreased with increasing the temperature up to ~250 K, which is typical for semiconductor materials. At temperatures above 250 K, TiS$_3$ exhibits metallic properties, i.e., the resistivity increases with the temperature rise. In printed devices, however, one would expect to have a network of randomly arranged exfoliated TiS$_3$ atomic chain bundles with many bundle to bundle interfaces, defects, and impurities resulting from the LPE process and subsequent printing. In this case, the electron hopping transport is more likely to be the main mechanism of electron conduction. The electrical conductivity due to electron hopping has smaller values than the bulk band conduction, and it increases with increasing temperature. We now analyze the resistivity data in more detail.

Several models have been proposed to describe electron hopping in disordered material systems. In the nearest-neighbor hopping (NNH) model, the system is considered to have randomly distributed isoeffective sites with a concentration of N_0 and the electron localization length of α so that $N_0 \alpha \ll 1$. The electrical conduction is carried out by the charge carriers jumping between the nearest sites. The temperature dependence of the electrical conductivity in NNH mechanism, σ_{NNH}, is described by the equation $\sigma_{\text{NNH}} = \sigma_{0\text{NNH}} \exp(-E_{\text{NNH}}/k_BT)$, where k_B is the Boltzmann constant, $\sigma_{0\text{NNH}}$ and E_{NNH} are the NNH conductivity constant and the NNH activation energy, respectively. This equation is similar to the equation for the electrical conductivity in the thermally-activated band-conduction model, $\sigma = \sigma_a \exp(-E_a/k_BT)$, where E_a is the thermal activation energy. The main difference in the formalisms is that $E_{\text{NNH}} < E_a$ so that generally NNH occurs at rather high temperatures, where the thermal activation energy is not sufficient to excite electrons to the conduction band but enough to excite them to the available spatially separated energy sites between the conduction and valence bands. At the low-temperature limit, electron hopping is dominated by the variable-range hopping (VRH) mechanism, where the upward transition of electrons between energetically distinct but spatially nearby states is less likely than the transition to states with energetically close but spatially farther away states. Our experimental data at low temperature can be better described with the Efros–Shklovskii VRH model, in which the hopping distance between the trap sites is not constant, and carriers can hop between the levels closer to the Fermi level. The temperature-dependent conductivity in this model is described by the equation $\sigma = \sigma_{0\text{VRH}} \exp(-(T_{\text{FF}}/T)^{1/2})$, where $\sigma_{0\text{VRH}}$ and T_{FF} are parameters that depend on the localization length and dielectric constant of the material.

Figure 2c shows the Arrhenius plot of the resistivity data in the entire examined temperature range. The plot is divided into four regions shaded in yellow, blue, orange, and green colors. The blue and green regions correspond to the temperature ranges, where the slope of the resistivity changes significantly. The change in the slope of the curve in the blue region is a signature of transitioning from VRH (yellow) to NNH (orange) conduction in disordered materials.

The activation energy calculated for the NNH conduction is ~12.4 meV. As expected, the extracted value is significantly
lower than the thermal activation energy reported for the bulk TiS₃ crystals, which is ~43 meV.⁴⁴,⁴⁶,⁵² The data deviates from the NNH model at the high-temperature region again (see the green area in Figure 2c). The reason for such a deviation needs further investigation. Some previous studies have reported that bulk crystals of TiS₃ are likely to undergo the charge density wave (CDW) phase transitions at ~60 K and ~220 K.⁵²,⁵⁸ The high-temperature phase transition in bulk form can happen in the temperature range between 200 K to 260 K, depending on the quality of the sample.⁵⁸ The reported phase transition temperatures are close to the transition regions, which we have marked in green and blue colors in Figure 2c. Figure 2d shows the resistivity data as a function of $T^{-1/2}$ in the temperature range from 78 to 115 K, where VRH conduction dominates.

According to the Efros–Shklovskii VRH model, the plot of $\ln(\sigma)$ as a function of $T^{-1/2}$ must be linear. One can see an excellent agreement between our experimental data and the fitted linear regression in this temperature range.

We used low-frequency electronic noise spectroscopy to further elucidate the electron transport properties in our printed devices. The details of our experimental setup and measurement procedures have been reported elsewhere in the context of other material systems.⁸⁴,⁸⁶ The analysis of the noise spectral density, its functional dependence on frequency, electric bias, and temperature can provide a wealth of information on the electron transport, particularly in material systems with high concentrations of defects and impurities, which act at the charge trapping sites. We have successfully
used electronic noise spectroscopy for monitoring phase transitions in materials, which reveal strongly correlated phenomena. Typically, at the frequencies $f < 100$ kHz, materials show the spectral noise density of $S(f) \sim 1/f^\gamma$ type, with $\gamma \sim 1$. In Figure 3a,b we present the voltage-referred noise power spectral density, S_n, and the normalized current noise power spectral density, S_i/I^2, for the device channel printed with the quasi-1D TiS$_3$ ink as a function of frequency. The noise spectra were measured for several bias voltages at RT. One can see that the noise generally follows the $1/f$ trend, and it increases with the increase in bias voltage as expected.

There are some traces of Lorentzian-type bulges at frequencies above $f = 100$ Hz. They can indicate the presence of certain defects or impurities with a particularly high concentration that act as the trapping centers for the charge carriers contributing to the current conduction. If such a defect has a characteristic time constant of the charge carrier life, its contribution to the noise spectrum appears as a Lorentzian bulge.

Figure 4a,b shows the voltage noise spectral density, S_n, and the normalized current spectral density, S_i/I^2, as a function of temperature. All measurements were carried out with a small applied bias of ~ 0.3 V to avoid Joule heating. The spectra in both plots follow the $1/f$ trend. However, γ is no longer close to 1, and it reveals a rather strong functional dependence on temperature. Figure 4c shows the extracted values of γ as a function of temperature in the range between 130 K to 350 K. The black dashed line is a guide to the eye only. The observed large deviation of γ from 1 can be related to the Lorentzian bulges (see Figure 4a,b), which are more pronounced at low and high temperature limits. The changes in the noise spectra can be associated with the reported metal–insulator transition at temperature $T_M \sim 250$ K as well as the change in the electron hopping conductivity around $T \sim 320$ K (see the green region in Figure 2c). Figure 4d shows the normalized noise spectral density, S_i/I^2, as a function of temperature at the fixed frequency of 10 Hz. The noise level abruptly increases at the temperature of ~ 320 K. This supports the hypothesis of changes in the electron hopping transport mechanism as seen in the resistivity data in Figure 2c and γ parameter dependence in Figure 4c.

METHODS

Liquid-Phase Exfoliation of TiS$_3$ Crystals. Liquid-phase exfoliation was conducted by placing 100 mg of TiS$_3$ crystals in a round-bottom flask with 50 mL of dry ethanol. The round-bottom flask was sealed with a septum and then placed in the center of a 40 kHz ultrasonic bath sonicator. Nitrogen gas was bubbled through the dispersion during the first hour of sonication to remove any dissolved oxygen. The dispersion was sonicated for a total of 24 h, sealed under nitrogen gas. After exfoliation, the dispersion was transferred to a 20 mL dram vial. This transfer was conducted in a dry nitrogen-filled glovebox to prevent any oxygen or water contamination. The resulting dispersion of the liquid-phase exfoliated TiS$_3$ in ethanol had a concentration of 2 mg/mL.

TiS$_3$ Ink Preparation and Characterization. Briefly, 3 mL of 4 mg/mL exfoliated TiS$_3$ in ethanol was mixed with 3 mL of ethylene glycol (EG) to give 6 mL of 2 mg/mL TiS$_3$ in 1/1 vol % ethanol/ethylene glycol as the ink. TEM of the solution-exfoliated TiS$_3$ nanoribbons was performed using an FEI Tecnai Osiris transmission electron microscope at the accelerating voltage of 200 kV. Ethylene glycol was added to the ink to increase the viscosity of the ink. This is to ensure proper dispensing and drying of the ink. The viscosity, surface tension, and density of the ink were measured to characterize the Z-number. To measure the viscosity, a CANNON SimpleVIS viscometer was used. Then, 0.5 μL of the ink was inserted into the device, and the measured kinematic viscosity was displayed on the device screen. Then, this value was divided by the density to calculate the dynamic viscosity. A CSC Scientific DuNouy interfacial tensiometer was used to calculate the surface tension of the ink. To measure the surface tension, the device ring was inserted into the ink. Then, the ring was raised slowly until the film between the ink and the ink broke. The surface tension value can be read from the device dial. With the addition of EG to the ink, the viscosity and surface tension of the ink were measured to be 3.346 mPa·s and 33.1 mN/m. The density of the ink was calculated using the rule of mixtures. The calculated density of the ink was 949.6 kg·m$^{-3}$. With these values, the calculated Z-number of the ink is 24.28 for the nozzle with an inner diameter of 210 μm used in this work.

Printing Devices with Quasi-1D TiS$_3$ vdW Materials. The TiS$_3$ ink used in a modified Hyrel 30M system 3D printer to print out the TiS$_3$ channel. To mimic the function of an inkjet printer, the printer head was swapped with a syringe holder. The holder controlled a blunt-end needle syringe with gauge 27 to dispense the ink on the substrate. The bed temperature of the printer was kept at 60 °C during the whole course of the printing process. Briefly, 20 layers of the material were printed on the substrate with the gold electrodes. The electrodes were fabricated by electron-beam lithography and lift-off Ti/Au (20-nm/200-nm), deposited by electron-beam evaporation. The final TiS$_3$ channel had a length of 4 μm. The width and thickness of the channel were 500 μm and 6 μm, respectively.

Electrical Resistivity Measurements. We determined the resistance of the samples using a standard two-probe method. The current–voltage (I–V) characteristics were measured in the cryogenic probe station (Lake Shore TTPX) with a semiconductor analyzer (Agilent B1500). The resistance, R, was extracted from the linear part of the I–V plots presented in Figure 1a. Assuming the isotropic properties in all directions, the resistivity is determined from the formula $\rho = RA/l$, where I and A were the channel length and the cross-sectional area, respectively. The thickness of the channel was measured with an optical profilometer, and the average cross section was calculated accordingly (see Supporting Information Section VI and Figure S5).

Noise Spectroscopy. The low-frequency noise experiments were conducted in the two-terminal device configuration. The noise spectra were measured with a dynamic signal analyzer (Stanford Research 785). A battery biasing circuit was used to apply a bias voltage to the devices. This was done to minimize the noise at 60 Hz and the harmonics associated with it. The signal measured by the dynamic signal analyzer is the absolute voltage noise spectral density, S_n, of a...
parallel resistance network consisting of a load resistor \((R_L)\) of 46 KΩ and the device under test with a resistance of \(R_D\). The normalized current noise spectral density, \(S_n/I_s\), was calculated by \(S_n/I_s = S_v \times [(R_L + R_D)/(R_L \times R_D)]^2/(I^2 \times G)\), where \(G\) is the amplification of the low-noise amplifier.

ASSOCIATED CONTENT

- **Supporting Information**
 The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsami.1c12948.
 A detailed description of the liquid-phase exfoliation and material characterization, printing, and device preparation, as well as electrical characterization of the device channel (PDF)

AUTHOR INFORMATION

Corresponding Authors
Fariborz Kargar – Nano-Device Laboratory and Phonon Optimized Engineered Materials Center, Department of Electrical and Computer Engineering, University of California, Riverside, California 92521, United States; Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States; orcid.org/0000-0003-2192-2023; Email: fkargar@ece.ucr.edu

Alexander A. Balandin – Nano-Device Laboratory and Phonon Optimized Engineered Materials Center, Department of Electrical and Computer Engineering, University of California, Riverside, California 92521, United States; Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States; Email: balandin@ece.ucr.edu

Authors
Saba Baraghani – Nano-Device Laboratory and Phonon Optimized Engineered Materials Center, Department of Electrical and Computer Engineering, University of California, Riverside, California 92521, United States; orcid.org/0000-0003-0256-0397

Jehad Abourahma – Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, United States

Zahra Barani – Nano-Device Laboratory and Phonon Optimized Engineered Materials Center, Department of Electrical and Computer Engineering, University of California, Riverside, California 92521, United States

Amirmahdi Mohammadzadeh – Nano-Device Laboratory and Phonon Optimized Engineered Materials Center, Department of Electrical and Computer Engineering, University of California, Riverside, California 92521, United States

Sriharsha Sudhindra – Nano-Device Laboratory and Phonon Optimized Engineered Materials Center, Department of Electrical and Computer Engineering, University of California, Riverside, California 92521, United States; orcid.org/0000-0001-5299-3962

Alexey Lipatov – Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, United States; orcid.org/0000-0001-5043-1616

Alexander Sinitski – Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, United States; Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588, United States; orcid.org/0000-0002-8688-3451

Complete contact information is available at: https://pubs.acs.org/10.1021/acsami.1c12948

Author Contributions
A.A.B. and F.K. conceived the idea, coordinated the project, contributed to experimental data analysis, and led the manuscript preparation; S.B. prepared the ink, printed the devices, conducted current—voltage and electronic noise measurements, and contributed to data analysis; J.A., A.L., and A.S. provided the TiS₃ crystals, characterized them by TEM, and contributed to the data analyses; A.M. contributed to electrode fabrication; Z.B. assisted with the material exfoliation and ink preparation and conducted Raman measurements; S.S. carried out thickness measurements by optical profilometer; All authors contributed to writing the manuscript.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
The work at UC Riverside was supported, in part, by the National Science Foundation (NSF) program Designing Materials to Revolutionize and Engineer our Future (DMREF) via a project DMR-1921958 entitled “Collaborative Research: Data Driven Discovery of Synthesis Pathways and Distinguishing Electronic Phenomena of 1D van der Waals Bonded Solids”. The work at UNL was supported by the NSF, through ECCS 1740136, as well as by the nCORE, which is a wholly-owned subsidiary of the Semiconductor Research Corporation (SRC), through the Center on Antiferromagnetic Magneto-electric Memory and Logic (AMML), task No. 2760.002.

REFERENCES

Gard, P.; Cruge, F.; Sourisseau, C.; Gorochov, O. Single-Crystal Micro-Raman Studies of ZrS\textsubscript{3}, TiS\textsubscript{3} and Several Zr\textsubscript{x}Ti\textsubscript{3-x}S\textsubscript{3} Compounds (0<\textsubscript{x}<0.33). J. Raman Spectros. 1986, 17, 283–288.

