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We describe two different proposals for implementing mathematically reversible and dis-
sipationless logic innanoelectronicsystems. Both are amenable to quantum computation
and use interacting single electrons housed in quantum dots to elicit logic functions. In
these systems, qubit errors accruing from decoherence events can be partially remedied by
quantum error control coding. We present some new results on burst-correcting quantum
codes that can addresscorrelatederrors in nanostructures.
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1. Introduction

Microelectronic logic gates of present-day vintage dissipate about 1 pJ of energy per switching cycle. The
Semiconductor Industry Association’s National Technology Roadmap projects that by the year 2007, the
dynamic power dissipated in CMOS devices will be 600 nW per logic gate with a gate density of 107 cm−2,
corresponding to a dissipation of 30 W cm−2 of chip area [1]. Assuming that CMOS will exhibit a switching
delay of∼10 ps, the energy dissipated in a switching cycle will be about 6×10−18 J. Single-electron transistors
and related devices are predicted to have similar energy dissipation [2]. At this time, these figures are still far
above thekT ln 2 (T = 300 K) classical limit forirreversiblelogic set forth by Landauer in his seminal 1961
paper [3].

It is natural to ask from the perspective of a solid-state device engineer if power dissipation is vital. Fifteen
years ago, removal of 1000 W cm−2 was demonstrated in a silicon chip [4]. Unfortunately, heat sinking
technology has not kept pace with solid-state circuits technology and heat removal continues to be a problem.
It appears that by the year 2007, the gate density may be constrained to 1010 gates/cm2 from mere heat sinking
considerations. Engineering denser device density will require either more efficient heat removal techniques,
or less energy dissipation per logic gate. It is the latter objective that stimulates research in quasi- or fully
reversible logic devices and motivates this paper. In reversible logic gates, the energy dissipated in a logic
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Fig. 1. Two exchange-coupled electrons in two quantum dotsA andB. The ground state of this system is antiferromagnetic; the spin
orientation of one electron is antiparallel to that of the other. If spin is used to encode logic bits, then this system acts as an inverter if
we consider one quantum dot (A) as the input port and the other (B) as the output port. The spin orientation inA can be aligned by a
SPSTM tip thus enabling a ‘write’ operation. The spin orientation inB can be read by a SPSTM tip thus enabling a ‘read’ operation.
The same system can act as a quantum inverter since the ground-state wavefunction is an entangled Einstein–Podolsky–Rosen state and
each quantum dot can exist in a coherent superposition of ‘upspin’ and ‘downspin’ states.

swing could approach zero†. This could certainly mitigate the technological problems associated with efficient
heat sinking.

In the past, there have been concrete proposals for various versions of reversible logic that dissipate less
thankT ln 2 amount of energy per switching cycle. They include schemes described by [8–10, 7, 11, 12].
None of these proposals envisionednanoelectronicimplementation. Recently, a nanoelectronic version of a
classical but reversible gate based on single-electron parametron has appeared in the literature [13]. We have
proposed a nanoelectronic implementation of classical irreversible logic [14] where the energy dissipation
could approach (but not fall below)kT ln 2. Nanoelectronic versions of quantum gates have also appeared in
the literature [15]. Here we propose and examine two nanoelectronic versions of reversible logic and quantum
gate which can be potentially dissipationless. The first is an inverter based on two spin-coupled single electrons
in adjacent quantum dots. The second is a Toffoli–Fredkin gate [7] based on three Coulomb-coupled single
electrons in three quantum dots. The latter is based on ideas proposed by Lloyd [16] and implements a locally
connected architecture capable of both classical reversible computation and quantum bit (qubit) manipulation.
In principle, such an architecture can result in a functionally complete quantum computer.

2. Spin-coupled inverter

Consider two single electrons housed in closely spaced quantum dots as shown in Fig. 1. We will assume
that there is only one size-quantized level in each dot. A weak magnetic fieldHz is applied globally to define
a spin polarization direction. The ground state of this two-electron system is antiferromagnetic [17] with the
two spins antiparallel (one spin will be aligned along the magnetic field and the other opposite to it). If spin
polarization is used to encode binary bits such that up-spin represents binary bit 1 and down-spin binary bit
0, then the spin polarization of one electron is the logic complement of that of the other when the system is in
ground state. This can be the basis of an inverter. We can orient the spin polarization in one dot (with a local
magnetic field) to conform to the input bit and the output will automatically be the inverse of the input.

† In his 1961 paper, Landauer showed that logical irreversibility leads to physical irreversibility and energy dissipation.
Logical reversibility implies that the input to a logic gate can be deduced from the output and not just the other way
around (i.e. the logical function is mathematically invertible). The minimum energy dissipated in a logically irreversible
step iskT ln 2. We will designate any system where the energy dissipated is less thankT ln 2 as a physically reversible
(dissipationless) system. Strictly speaking, they must also be logically reversible. It is of course understood that logically
reversible gates (e.g. an inverter) do not necessarily have to be dissipationless (all present-day CMOS inverters dissipate
energy during switching), but they couldin principle be dissipationless. We will avoid the term ‘conservative logic’ in
this paper since it has different meanings in different contexts. Fredkin and Toffoli [7] used conservation to indicate
‘bit conservation’ rather than purely energy conservation and pointed out that logical reversibility and conservation are
independent properties. There are computing machinery that are logically reversible but not bit conservating [5] and vice
versa [6].
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The Hubbard Hamiltonian for this system is

H =
∑
iσ

[ε0niσ + gµB Hi sign(σ )]+
∑
〈i j 〉

ti j [c
+
iσcjσ + h.c] +

∑
i

Ui ni↑ni↓

+
∑
〈i j 〉αβ

Ji j c
+
iαciβc+jβcjα + Hz

∑
iσ

gµBniσ sign(σ ) (1)

where the first term denotes the electron energy in thei th dot (Hi is a z-directed magnetic field applied
selectively to thei th dot with, say, a spin-polarized scanning tunneling microscope (SPSTM) tip, to orient
its spin polarization), the second term denotes the hopping between the dots, the third term is the Coulomb
repulsion within thei th dot, the fourth term is the exchange interaction between nearest-neighbor dots, and
the last term is the Zeeman splitting induced by the globally applied magnetic fieldHz directed along the
z-direction.

Molotkov and Nazin [18] simplified this Hamiltonian to the Heisenberg model which yields

H = J
∑
〈i j 〉

σziσz j + J
∑
〈i j 〉

[
σxiσx j + σyiσy j

]+ ∑
input dots

σzih
input
zi (J > 0) (2)

where we have neglected the global magnetic fieldHz and the Coulomb repulsionUi .† The quantityJ is
the exchange splitting andhinput

zi is the Zeeman splitting caused by the local magnetic field applied with an
SPSTM tip to thei th dot to orient the spin(s) of its electron(s).

The above Hamiltonians describe any number of dots, each containing any number of electrons. Here, we
are concerned with the special case of just two dots each containing only one electron. We will call these two
dotsA andB, whereA is the input dot (whose spin polarization is set by an external SPSTM tip to conform
to the input bit) andB is the output dot. Let us consider the case when the input bit corresponds to ‘upspin’.

In the basis of two electron states, the Hamiltonian in eqn (2) can be written as


| ↓↓〉 | ↓↑〉 | ↑↓〉 | ↑↑〉

hA + J 0 0 0
0 hA − 2J 2J 0
0 2J − hA −2J 0
0 0 0 −hA + J


| ↓↓〉
| ↓↑〉
| ↑↓〉
| ↑↑〉

wherehA is the Zeeman splitting caused by the externally applied local magnetic field in input dotA.
The eigenenergies and eigenstates of the above Hamiltonian are found by diagonalizing

Eigenenergies Eigenstates

hA + J | ↓↓〉

−J +
√

h2
A + 4J2

√
1
2

(
1+ hA√

h2
A+4J2

)
| ↑↓〉 +

√
1
2

(
1− hA√

h2
A+4J2

)
| ↓↑〉

−J −
√

h2
A + 4J2

√
1
2

(
1− hA√

h2
A+4J2

)
| ↑↓〉 −

√
1
2

(
1+ hA√

h2
A+4J2

)
| ↓↑〉

−hA + J | ↑↑〉

† Recently, Bychkovet al. (A. M. Bychkov, L. A. Openov and I. A. Semenikin, JETP LeH.,66, 298 (1997)) studied
some aspects of this system using the full Hubbard Hamiltonian. Their results are qualitatively identical to ours.
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In the absence of any applied local magnetic field (hA = 0), the ground state energy is -3J and the ground-
state wavefunction is12(| ↑↓〉 − | ↓↑〉) which is an entangled Einstein–Podolsky–Rosen state. Neither the
input dot nor the output dot has a definite spin polarization.

In [19], we showed that if the system is initially in the ground state and a local magnetic field is applied to
the input dotA at timet=0 to align its spin polarization to the ‘up’ state, then unitary evolution of the system
according to

ψ(t) = exp[−iHt/h̄]ψ(0), (3)

mandates that the wavefunction at timet , is given by

ψ(t) = c2(t)| ↑↓〉 + c3(t)| ↓↑〉 (4)

where

c2(t) = ei J t/h̄

√
2

cos(ωt)− i

 hA

h̄ω
+
√

1− h2
A

h̄2ω2

 sin(ωt)


c3(t) = −ei J t/h̄

√
2

cos(ωt)− i

 hA

h̄ω
−
√

1− h2
A

h̄2ω2

 sin(ωt)

 (5)

andh̄ω =
√

h2
A + 4J2.

If the system was to act as an inverter, it should ultimately reach the state| ↑↓〉. This desired state however
is not an eigenstate of the system. Consequently, the system will continue to evolve to a different state unless
a ‘read’ operation collapses the wavefunction as soon as the desired state is reached. The time to reach the
desired state, which we will designate the switching time, is given by

τd = h

4
√

h2
A + 4J2

. (6)

Note that this time must be much shorter thanh̄/kT in order to maintain reasonable coherence in quantum
computing [20]. This can be achieved by makingJ >> kT. For 100Å diameter dots separated by 1 eV high
and 20Å wide barriers, the exchange splittingJ can be on the order of 100 meV in semiconductors.

If the inverter’s initial state is the ground state, then it is possible to switch the invertercompletely(i.e.
c2(τd) = 1, c1(τd) = c3(τd) = c4(τd) = 0) if hA = 2J. However, if the initial state is not the ground state, then
the inverter can never switch completely to the desired state (i.e.c2(τd) < 1). Nonetheless, we can still define
a switching time as the delay that elapses before the closest approach to the desired state (in other words the
time required to reach the maximum value ofc2). This switching time is still given by eqn (6). This equation
also shows that the inverter will ‘switch’ in a finite timeeven ifthe switching energyhA→ 0. However, the
‘switching’ is ephemeral since the system will continue to evolve unitarily unless a read operation collapses
the wavefunction at the right juncture.

In this system, there is no dissipation whatsoever except during the read operation. Therefore, the product
of dissipated energy and switching delay (necessary to complete the computation) can obviously be zero. The
product of applied energy and switching delay is

hAτd = hhA

4
√

h2
A + 4J2

. (7)

We immediately see that any energy-time uncertainty that might have been expected is violated

hAτd <
h̄

2
if hA <

2J√
π2− 1

. (8)
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A

B Toffoli–Fredkin        B′
C gate      C′

A′

A B C A′ B′ C′

0 0 0 0 0 0
0 1 0 0 1 0
1 0 0 1 0 0
1 1 0 1 1 1
0 0 1 0 0 1
0 1 1 0 1 1
1 0 1 1 0 1
1 1 1 1 1 0

Fig. 2. The Toffoli–Fredkin gate and its truth table.

Thus we can violate the uncertainty by makinghA arbitrarily small (and yet switching in a finite time). It
should be emphasized thathA is the energy applied to switch the inverter and is not necessarilydissipated.
Even if it were completely dissipated, the above equation would still clearly show that there is no energy-
time uncertainty limitation on (dissipated) energy-delay product, contrary to the popular view espoused in
[21, 22]. Landauer agrees that there is no limit imposed by the uncertainty principle as far as dissipated energy
is concerned [23]. In fact, concrete and detailed classical models of dissipationless computation have been
provided by several authors [7–11] and numerous quantum-mechanical models of dissipationless computation
have also been forwarded starting with the early work of Benioff [24, 25]. These models require no dissipated
energy, but usually do require input energy to switch. What we see in the pathological example above is that
there is no energy-time uncertainty limit even when the energy concerned is theapplied energyrather than
the dissipated energy. Computation can proceed by applying arbitrarily small energy to initiate the process.

3. Coulomb coupled quantum dots for Toffoli–Fredkin gate and quantum
computation

In the previous section, we described a quantum inverter. An inverter however is not a universal gate. The
Toffoli–Fredkin gate is a mathematically (and hence physically) reversible three-bituniversalgate with three
inputsA, B, C and three outputsA′, B′ andC′. The truth table for this gate is shown in Fig. 2.

In this gate,A′ = A andB′ = B. The bitC′ = C̄ only if A = B = 1. Otherwise,C′ = C.
A physical realization of the Toffoli–Fredkin gate that is most easily amenable to nanoelectronic adaptations

was proposed by Lloyd [16] expanding on ideas set forth earlier by Mahleret al. [26]. The Lloyd architecture
consists of an array of three weakly coupled quantum systemsA, B andC. Each system can exist in one of
two energy statesEi

0 andEi
1 (i ∈ A, B,C) which represent logic 0 and 1. Furthermore,A, B, C are distinct

systems such that the resonant energiesh̄ωi = Ei
1 − Ei

0 are different for each of them (ωA 6= ωB 6= ωC). A
πi pulse is a radiation that obeys the condition

1

h̄

∫
Eµi

B · êE(t)dt = π (9)

whereEµi
B is the induced dipole moment between the ground state and excited state of thei th system,̂e is the

polarization unit vector of the incident radiation andE(t) is the magnitude of the pulse envelope at timet .
Such a pulse flips thei th system from the excited state to the ground state and vice versa. It is assumed that
the duration of this pulse is much shorter than the inverse of the spontaneous decay rate from the excited to
the ground state.

Because of the nearest-neighbor interaction betweenA, B andC, the resonant energies̄hωi for each of
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them is no longer unique and depends on whether its nearest neighbors are in the excited or ground state.
Thus

ωA→ ωA
0 , ω

A
1

ωB→ ωB
00, ω

B
01, ω

B
10, ω

B
11

ωC→ ωC
0 , ω

C
1 . (10)

Here, the subscripts on the right-hand side refer to the states of the corresponding system’s nearest neigh-
bor(s). For instance,ωB

00 is the resonant frequency of systemB when its two neighborsA andC are both in
their ground states.

A Toffoli gate can be realized by shining aπ pulse with frequencyωB
11. The state ofB is inverted only if

both A andC are in their excited states. This characteristic realizes the truth table of a Toffoli gate.
In order to perform the computation, one needs to connect various Toffoli gates. This can be realized without

physical wires if we have a linear array consisting of unitsABC, ABC, . . .. Compuation is performed by first
initializing the array to the input with appropriate sequence ofπ pulses and then applying another series of
π pulses to complete the computation. This methodology was described in detail in [16].

The above system can also be used to perform quantum computation if bothπ andπ/2 pulses are used. A
πi /2 pulse puts thei th system in a state 1/

√
2(|1〉 − |0〉)which is a ‘qubit’ in the coherent superposition of

bits 1 and 2. By using an appropriate pulse train, one can perform quantum computation.
Landauer’s criticism of this scheme is two-fold. First, it is not truly dissipationless unless theπ or π/2

pulses can be recycled. This would also require that they are not distorted by interaction with the system.
Second, interaction with the environment will cause errors and error correction will require dissipation. In
principle, the latter objection is no longer tenable in view of the recent advances in quantum error control
coding [31, 33, 32]. Errors can be corrected by ‘software’ rather than ‘hardware’. Of course, this is done at
the expense of increased memory and a larger system may decohere more quickly than a smaller system. We
will address the issue of error correction later in this paper.

Landauer’s first criticism is much more difficult to rebut. Photon recycling is not an unheard of concept in
solid state systems [27–30] but it is difficult. The requirement that the pulse shape remain undistorted in any
wave guide is a tall order. This would require the wave guide to have specific nonlinearities so that the pulses
essentially become solitons. At this time, we do not have a suitable design for such a recycler.

In the remainder of this paper, we will examine a specific implementation of Lloyd’s generic ideas and
provide a concrete example of a Toffoli–Fredkin gate. This example is suitable for nanoelectronics.

3.1. Nanoelectronic version of a Toffoli–Fredkin gate

Consider an array of three quantum dots with high barriers (Fig. 3). Each houses a single conduction band
electron.

For high enough barriers, we can neglect any overlap between the wavefunctions of electrons in adjacent
dots, and write the many-body wavefunction of the three-electron system as a product of three single-particle
wavefunctions in the Hartree approximation

9n,k,l ≡ 9n,k,l (x1, x2, x3) = ψn(x1)φk(x2)χl (x3), (11)

whereψn(x1), φk(x2), andχl (x3) are the single-electron envelope functions for the first, second and third
dots, respectively. Subscriptsn, k, l denote conduction subband levels. We assume that each dot has two
bound states in the conduction band so that each electron can occupy either ground state(n = 1,k = 1, or
l = 1) or the excited state(n = 2,k = 2, or l = 2). These two states encode logic bits 1 and 0.

Owing to Coulomb interaction, the resonant frequency for transitions between the excited and ground states
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Fig. 3. The potential profile for a three-dot system showing the wavefunction envelopes for the ground and excited states.

in one dot depends on whether the electron(s) in the neighboring dot(s) are in the excited or ground state. For
the central dot, this means thatω11 6= ω10 6= ω01 6= ω00. This forms the basis of a Toffoli–Fredkin gate. Note
that in reality, a single gate only requires thatω11 be distinct. However, arbitrary data manipulation requires
that allω’s be distinct.

Let us calculate the resonant transition frequency of the central quantum well as a function of two adjacent
wells’ states. We denote the widths of the well asd, a, andb (see Fig. 3) and will refer to them as the ‘left’
well (L), the ‘central’ well (C), and the ‘right’ well (R), respectively. The barier thicknesses areW andH . The
first-order perturbation corrections to the energy of thek subband of the C well are given by the expression

En,k,l = Ek + 〈9n,k,l |V(x3− x2)|9n,k,l 〉 + 〈9n,k,l |V(x1− x2)|9n,k,l 〉, (12)

whereV(xi − xj ) is the Coulomb interaction terms,xi are absolute coordinates of electrons belonging to
different wells,m∗ is the effective mass of the conduction band electron,Ek is the unperturbed confined
energy which is given for the square well potential by a regular expression

Ek = k2π2h̄2

2m∗a2
. (13)

To simplify the calculation, we define a set of local coordinate systems (see Fig. 3). Substituting in eqn (11),
the electron envelope functions for the square well potential (written in local coordinates), can be rewritten as

9n,k,l =
√

2

d
sin
(πnz

d

)√2

a
sin

(
πkx

a

)√
2

b
sin

(
π ly

b

)
. (14)

The distance between electrons in the R and C wells (in O′ coordinate system) isx3− x2 = a+W+ y− x,
while the distance between electrons in the L and C wells (in O′′ coordinate system) isx1−x2 = a+H+z−x.
With the limits of integrations determined by the well boundaries, eqn (12) now reads

En,k,l = π
2h̄2k2

2m∗a2
+ e2

πε∗ab

∫ a

x=0

∫ b

y=0

sin2(πkx/a) sin2(π ly/b)

a+W + y− x
dx dy

+ e2

πε∗ad

∫ a

x=0

∫ d

z=0

sin2(πkx/a) sin2(πnz/d)

a+ H + z− x
dx dz, (15)

whereε∗ = fbεb+ fwεw is an effective dielectric constant of the system,fb ( fw) andεb (εw) are the volume
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fraction and dielectric constant of the barrier (well) material, respectively. Note that with this definitionε∗ is
a function of well width when the barrier thickness is fixed.

The energy of the transition between the first excited state (k = 2) and the ground state (k = 1) in the
central well can now be written as a function of the principal numbersn andl of the neighboring wells:

1En,l = 3π2h̄2

2m∗a2
+ e2

πε∗ab

∫ a

x=0

∫ b

y=0

sin(3πx/a) sin(πx/a) sin2(π ly/b)

a+W + y− x
dx dy

+ e2

πε∗ad

∫ a

x=0

∫ d

z=0

sin(3πkx/a) sin(πkx/a) sin2(πnz/d)

a+ H + z− x
dx dz. (16)

Here we have utilized some trigonometrical equalities to simplify the result of the subtraction1En,l =
En,2,l − En,1,l .

In order to be able to build a conditional quantum gate (or the Toffoli–Fredkin gate), the transition energy
1En,l should be different for all possible quantum state{|n〉, |l 〉}: 1E1,2 6= 1E2,1 6= 1E1,1 6= 1E2,2.

Obviously, the two states which are most difficult to resolve are{|1〉, |2〉} and{|2〉, |1〉}. For convenience, we
write here explicitly the energy difference between these two states

1E1,2−1E2,1= e2

πε∗a

∫ a

x=0

(∫ b

y=0

sin(3πx/a) sin(πx/a) sin(3πy/b) sin(πy/b)

b(a+W + y− x)
dy

×
∫ 0

z=d

sin(3πkx/a) sin(πkx/a) sin(πz/d) sin(3πz/d)

d(a+ H + z− x)
dz

)
dx. (17)

To derive eqn (17), we used the fact that sin2(2πy/b) − sin2(πy/b) = sin(3πy/b) sin(πy/b), and changed
the limits of integration. For the special case whenW = H , eqn (17) can be further simplified by substitution
of variable in the integrand to

1E1,2−1E2,1= e2

πε∗a

∫ a

x=0

∫ b

u=d

d sin(3πu/b) sin(πu/b)+ bsin(3πu/d) sin(πu/d)

bd(a+ H + u− x)
× sin(3πkx/a) sin(πkx/a) du dx. (18)

It is easy to see from eqn (18) that when the thicknesses of two peripheral wells and barriers are equal (d = b
and W = H ), the states{|1〉, |2〉} and {|2〉, |1〉} are degenerate and can not be resolved. This is a direct
result of the symmetry of the system and can be easily guessed without mathematical consideration. A more
interesting consequence of eqns (17) and (18) is that there exists a ratio ofb/d (6= 1) such that the integral
in (18) vanishes, and the states are degenerate again. The physical origin of this additional degeneracy will
be discussed later. One should find optimum values of well thicknessesb andd such that the states{|1〉, |2〉}
and{|2〉, |1〉} are resolved.

3.2. Resonant energies in Coulomb coupled dots

In calculating resonant energies in Coulomb coupled dots, we will concentrate mostly on two material
systems. The first is InAs characterized by light electron effective massm∗(InAs) = 0.023mo and strong
dielectric screeningε(InAs)= 14.6 (mo is the free electron mass). The second is CdS which is characterized
by heavy electron effective massm∗(CdS)= 0.21mo and relatively weak dielectric screening (ε(CdS)= 5.4
for the frequencies close to band gap resonance andε(CdS)approaches 3.1 for the infrared region relevant to
intraband transitions). Ordered and regimented arrays of InAs and CdS dots uniformly dispersed in an alumina
matrix are being self-assembled in our laboratories [34]. These are realistic systems that are relatively easy
to produce.

In order to find optimum values of peripheral well thicknesses, we will calculate transition energy1En,l

as a function of the R well thicknessb while fixing the L well thicknessd and using it as a parameter. For
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Fig. 4. Energy of the transition between the first excited and ground states in the ‘central well’ as a function of the width of the ‘right’
well. The upper family of curves corresponds to the ‘left’ well width of 20Å, the lower one corresponds to the ‘left’ well width of 50Å.
The results are shown for all four possible combination of states in the two extremal wells. Material parameters for InAs have been used.

simplicity, the thickness of the left barrier will be assumed to be equal to that on the right (W = H ). These
thicknesses will be assumed to be 20Å unless otherwise stated. This value of the barrier thickness guarantees
negligible barrier penetration of the wavefunction.

In Fig. 4, we present the energy of the transition between the first excited state and the ground state in the
C well as a function of the R well width (b). The curves are shown for InAs quantum wells. The thickness of
the C well is 100Å. The L well width is varied over two values: 20̊A and 50Å. It is interesting to note that
the splittings between different states attain maximum values whenb is in the range 150–170̊A. Moreover,
the states{|1〉, |2〉} and{|2〉, |1〉} are degenerate not only atb = d = 50 Å but also atb ≈ 400Å. At first,
this may appear surprising. The physical origin of the additional degeneracy lies in the fact that Coulomb
perturbation to the transition energies depends on the distance between particles as well as on the electron
envelopes which serve as weight functions in the integrand in eqn (18). Consequently, at some values of
b/d 6= 1 the integration overu in eqn (18) vanishes.

In order to examine the behavior of the worst resolved states{|1〉, |2〉} and{|2〉, |1〉}, we plot separately
the difference in transition energy between these two states as a function of the R well thickness (see Fig. 5).
The L well thickness is chosen to be 55Å (solid line), 105Å (dashed line), and 505̊A (dotted line). As one
can see, the average splitting is very small for this system and represents a fraction of meV at its maximum.
Each curve has an additional degeneracy (1E1,2− 1E2,1 = 0) atb/d 6= 1 which should be avoided while
designing the logic gate. Since1E1,2−1E2,1 does not depend onm∗ (see eqn (7)) and strongly depends on
ε∗, one can expect that the resolution of the{|1〉, |2〉} and{|2〉, |1〉} states will be better for CdS and any other
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system with lower dielectric constant. This is indeed the case, and it is clearly seen in Fig. 6. The splitting
between states is an order of magnitude higher for the CdS system compared to the InAs system.

It is intuitively clear that in order to increase the energy difference between{|1〉, |2〉} and{|2〉, |1〉} states,
one should introduce higher asymmetry into the system. Apart from varying the R well thickness, it is possible
to break the symmetry by changing the barrier thickness (see Fig. 6). One can notice that increasing the width
of one of the barriers decreases the energy separation between{|1〉, |1〉} and{|2〉, |2〉} states but increases
it for {|1〉, |2〉} and{|2〉, |1〉} states. The degeneracies (b = 50 Å and b ≈ 400 Å), for the uniform barrier
system, disappear for a system with different barriers. This is of course also desirable from architectural
considerations. Another potential way of increasing the energy splitting between{|1〉, |2〉} and {|2〉, |1〉}
states is through engineering the potential profile. One well can be rectangular and the other parabolic. This
may be achieved through dopant grading.

4. Quantum error correction codes: Software countermeasures against decoherence

One serious drawback of solid-state systems is the short coherence time for electrons. It has recently been
demonstrated that the electron coherence time saturates to about 1 ns in most solids as the temperature is
decreased towards 0 K [35]. This would have seriously dampened prospects for solid state implementation of
quantum computers were it not for the recent advances in quantum error control coding.

The theory of quantum error correction is now an active area of research [31–33, 36–38]. Various techniques
regarding construction of quantum error correcting codes based on classical codes have been proposed [31–
33, 38]. Here, we briefly review the process of error-correction for quantum information, and then present
some new results on the design of codes for the case where decoherence events arecorrelated. Correlation
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between decoherence events is a more physical and realistic assumption in nanoelectronic systems (such as
the quantum-dot version of the Toffoli–Fredkin gate or the spin inverter) since the spatial separation between
dots is typically much smaller than the radiation wavelength or phonon wavelength causing decoherence. In
fact, inelastic scattering that affect a large number of dots equally (when the offending phonon’s wavelength
spans several dots) may not cause serious decoherence. This model contrasts with the usual assumption in
recent work that decoherence events of individual qu-bits are independent. The results are briefly presented
here, and the associated proofs and details are documented in [39].

4.1. A basic review

Noise is an unavoidable feature of any physical system. In classical systems, it can be viewed as arising
due to the interaction between those degrees of freedom of a physical system pertinent to a measurement and
their interaction with other known and/or unknown degrees of freedom, in a random manner. For example,
in a classical communication channel, a perfectly correlated input signal appears noisy at the output due to
interaction of the channel with unintended external radiation during signal propagation. Here, the degrees of
freedom that are pertinent to the communication channel are the electronic signals carrying the binary 0 and
1 values, while the undesired degrees of freedom—which interact with the channel—correspond to that of
the external radiation.

In quantum systems, there are two sources for signal noise: (i) interaction of the pertinent degrees of freedom
of the physical system with that of the external world as discussed in the previous paragraph, and (ii) due to the
probabilistic nature of quantum physics. The second component is present even in the absence of interaction
with external degrees of freedom (of course, only until a measurement is made). An example where this is
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manifested is the shot noise in current flowing across a barrier. In this section, though we deal with qubits,
which are quantum systems, we will be concerned only with correcting errors arising due to interaction of
the system with external degrees of freedom. Typical examples of such external degrees of freedom are the
phonon and photon fields.

Model:
The desired degrees of freedom of a quantum computer withN bits are the 2N orthonormal states|I 〉 ∼
|x1x2 . . . x2N 〉 where,x1, x2, . . . , x2N ∈ {0,1}. The undesired degrees of freedom, which comprise all degrees
of freedom other than the 2N mentioned states are labeled|e1〉, |e2〉, . . ., and will hence forth be referred
to as the environment. The environment states, as will appear in the rest of this section, are not necessarily
orthogonal to one another or normalized to unity. The most general model for decoherence is one where
an initially unentangled state of the computer and the environment|φ〉 ⊗ |e〉, upon interaction with the
environment, evolves to a state where each of the basis states of the computer is entangled with a state of the
environment,

|φ〉 ⊗ |e〉 =
( 2N∑

j=1

aj | j 〉
)
|e〉 →

2N∑
j=1

aj |ej 〉 ⊗ | j 〉. (19)

If the various states|ej 〉 are identical, we simply have the initial state. The degree of decoherence would depend
on the correlation between the various environment states. An error that maximally entangles the states of the
computer with those of the environment would be hopeless to correct. In the classical case this corresponds
to a situation where almost all bits have flipped, clearly a hopeless case for classical error correction. The
probability for such an event is, however, very small and it is sufficient to design codes that correct errors in
only a small fraction of the total number of bits.

Independent qubit decoherence model (IQD model):Each qubit interacts with a seperate environment and
decoheres as (we drop the outer product symbol between the states of the computer and the environment),

|0〉j |e〉 → |e1〉|0〉j + |e2〉|1〉j (20)

|1〉j |e〉 → |e3〉|0〉j + |e4〉|1〉j , (21)

where the subscriptj denotes thej th qubit. From a physical view point, each qubit can be considered to
interact with an independent environment if the inter qubit distance is much larger than the correlation length
of the environment.

4.2. Spatially correlated qubit errors and burst-correcting quantum codes

The IQD model is a valid assumption when the spatial separation of qubits in a quantum register is larger
than the correlation length of the reservoir (or source of decoherence). Whether this condition is met or not will
depend on specific physical models for quantum computers. The two main hardware proposals for quantum
computers are the ion trap model [40] and the polymer chain model [16]. The exact nature of decoherence in
these models is not well understood but we would expect the IQD model to break down in the polymer chain
model where qubits are only a few angstroms apart. Interaction with phonons whose spatial extent would
be several atoms long will result in correlated decoherence of spatially continuous qubits. Reference [41]
provided the first step in studying the effect of decoherence by assuming different models for interaction of
qubits and the reservoir. Specifically, the effect of decoherence on a two-qubit system under circumstances
when the IQD model is valid and when the correlation length of the reservoir is larger than the separation of
the two qubits were studied. An important conclusion was that the second model for decoherence (i.e. where
the correlation length is larger than the separation of qubits) leads to superdecoherence and subdecoherence
of certain off-diagonal elements of the density matrix in comparison with the IQD model.
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If the details of the decoherence mechanism of qubits are known, then it might be possible to build more
efficient error correcting codes compared with the IQD model. In classical error correction, it is well known
that magnetic tapes used for storage are usually defective over length scales corresponding to a few bits. Then
it is sufficient to code information on the tape so as to correct only spatially continuous errors. Similarly, in a
classical communication channel, disturbances of the channel over short time periods lead to random single
errors while disturbances over longer time periods lead to temporally continuous errors at the receiver. Such
errors are called burst errors and the corresponding error-correcting codes have significantly higher rates (see,
e.g. [42]).

In this paper, we discuss a quantum analog of burst-error-correcting codes. These codes would be important
(i) when the coherence length of the reservoir is large enough to cause decoherence of spatially contiguous bits
to be dominant, (ii) in storing of quantum information on a string of qubits (this case is similar to the magnetic
tape case mentioned above; uninteded impurities here may perturb the energy levels of a few contiguous
qubits) and (iii) in communication of quantum information where entangled qubits would be temporally
transported over an appropriate communication channel [37].

We described different schemes for constructing quantum burst-correcting codes. As expected, these classes
of codes are more efficient than codes that protect against random errors. More specifically, to protect against
burst errors of widthb (whereb is a fixed constant), it is enough to mapn − logn − O(b) qubits ton
qubits, while in the case oft random errors at leastn− t logn qubits should be mapped ton qubits (the best
construction so far mapsn− (t+1) logn−O(1)qubits ton qubits). Only the results and the associated steps
are summarized here, and all the proofs can be found in [39].

4.2.1. Basic concepts and definitions

In this section we provide basic definitions and notations about quantum error-correcting codes. We shall
also describe various methods for constructing these codes; these techniques will be used in Sections 4.2.3
for constructing several different kinds of burst-correcting quantum codes.

A sequence of amplitude errors in qubitsi1, . . . , i t of a block ofn qubits can be represented by the unitary
operatorXα, where the binary vectorα of lengthn has 1 components only at positionsi1, . . . , i t . Thus, for
the basis|v1〉 , . . . , |v2n〉 of the 2n-dimensional Hilbert space ofn qubits, we have

Xα |vi 〉 = |vi + α〉 . (22)

Similarly, a sequence of phase errors can be written as

Zβ |vi 〉 = (−1)vi ·β |vi 〉 , (23)

where the binary vectorβ represents the positions of errors, andvi · β is the inner product of two binary
vectors modulo 2. Note that

ZβXα = (−1)α·βXαZβ. (24)

Since we will be concerned with sets of errors with special structures, it is useful for us to consider a general
setting, where a setE of possible errors of the form±XαZβ is fixed (a similar approach is followed in [43]).
Let E be the set of the pairs(α, β) such that eitherXαZβ or−XαZβ is in E . For example, the result of the
entanglment of introducing at mostt randomerrors in a state|x〉 can be repesented as±XαZβ |x〉, where

wt(α ∪ β) ≤ t †. Therefore, in this caseE = { (α, β) | wt(α ∪ β) ≤ t
}
. We will use the following notations:

E X =
{
α ∈ {0,1}n | (α, β) ∈ E for someβ ∈ {0,1}n } ∪ {0},

E Z =
{
β ∈ {0,1}n | (α, β) ∈ E for someα ∈ {0,1}n } ∪ {0}.

† Here wt(c) denotes the weight of the binary vectorc, i.e. the number of 1-components ofc; and the binary vectorα∪β
is the result of component-wise or operation ofα andβ, for example(011010)∪ (000110)= (011110).
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For example, in the above example whereE is the set of at mostt (random) errors, bothE X andE Z are equal
to { c ∈ {0,1}n | wt(c) ≤ t }. The following result gives a necessary and sufficient condition for a set of
quantum states to constitute a quantum code.

Theorem 4.1([37, 43]) . A 2k-dimensional subspaceQofC2n
is an((n, 2k))error-correcting quantum code

mappingk qubits ton qubits that protect against all errors inE if for every orthonormal basis|x1〉 , . . . , |x2k〉
of Q and everye, e′ ∈ E

〈xi | ee′ | xj 〉 = 0, if i 6= j, (25)

〈xi | ee′ | xi 〉 = 〈xj | ee′ | xj 〉. (26)

If for all i , 〈xi | ee′ | xi 〉 = 0, then the quantum code is said to benon-degenerate.

In [33, 32] it is shown how to use classical error-correcting codes to build quantum codes. Although they
stated their results when errors are (random) errors of weight at mostt , their construction can easily be
generalized for any setE of errors. Before we state this result, we reiterate a definition concerning classical
codes. LetC be a subspace of{0,1}n, andF be a subset of{0,1}n. We sayC has the ability to correct every
error fromF (or simply,C hasF-correcting ability) if and only if every two different elementse1 ande2 of
F belong to different cosets ofC; or equivalently,e1+ e2 6∈ C.
Theorem 4.2. Let E be a set of possible quantum errors. If there are [n, k] classical codesC1 andC2 (with
2k > n) such thatC2

⊥ ⊆ C1 andC1 hasE X-correcting ability andC2 hasE Z-correcting ability, then there is
an((n, 22k−n)) quantum code that hasE-correcting ability.

A special case of the above theorem is whenC1 = C2; thus we have the following corollary.

Corollary 4.3. Let E be a set of possible quantum errors. If there is an [n, k] classical codeC (with
2k> n) such thatC is weakly self-dual (i.e.,C⊥ ⊆ C) andC has bothE X-correcting ability andE Z-correcting
ability, then there is an((n, 22k−n)) quantum code that hasE-correcting ability.

It is possible to generalize the above construction even for the case whenC is not weakly self-dual.

Theorem 4.4. Let E be a set of possible quantum errors. Suppose that there is an [n, k] classical codeC
such thatC hasE X-correcting ability andC⊥ hasE Z-correcting ability. LetD = {e+ e′ | e, e′ ∈ E X}. Then
there is a quantum code that mapsn− k− dlog2 |D|e qubits ton qubits and hasE-correcting ability.

In [44, 38] a general method for describing and constructing quantum error-correcting codes is proposed.
Consider unitary operatorse1 = Xα1 Zβ1, . . . ,ek = Xαk Zβk , such thatei

2 = I (the identity operator) and
ei ej = ej ei , for all i and j (i.e.αi · βi = 0 andαi · βj + αj · βi = 0, where the inner products are modulo 2).
Consider thek× (2n) matrix

H =

 α1 β1
...

...

αk βk

 . (27)

Suppose the matrixH has full rank over GF(2). Then the set of the vectors|x〉 inC2n
such thatei |x〉 = |x〉, for

all 1≤ i ≤ k, form an(n−k)-dimensional quantum code. The following theorem connects the error-correcting
ability of this code with the properties of the dual space ofH in {0,1}2n.

Theorem 4.5([44]) . Let E be a set of quantum errors. Suppose thek × (2n) matrix H in (27) is totally
singular, i.e.αi · βi = 0 andαi · βj + αj · βi = 0 for all i and j . Let C denote the [2n, k] binary code
with H as its generator matrix. Then the space of the vectors|x〉 such thatXαi Zβi |x〉 = |x〉, for all 1 ≤
i ≤ k, is an ((n, 2n−k)) quantum code that hasE-correcting ability if for every(α1, β1), (α2, β2) ∈ E either
(α1+ α2, β1+ β2) ∈ C or H · (β1+ β2 | α1+ α2)

T 6= 0.
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4.2.2. Some results on binary cyclic codes

We construct different burst-correcting quantum codes (each with different dimensions) by utilizing The-
orems 4.2, 4.4 and 4.5 when the underlying classical codes are cyclic. In this section we provide necessary
facts and results concerning binary cyclic codes.

A linear subspaceC of {0,1}n is called acyclic codeif C is closed under the cyclic shift operator, i.e.
whenever(c0, c1, . . . , cn−1) is in C then so is(cn−1, c0, . . . , cn−2). When dealing with cyclic codes, it is
much easier to identify each binary vector with a polynomial over the binary fieldF2 = {0,1}. For this, we
correspond to the vectorc = (c0, c1, . . . , cn−1) in F2

n the polynomialc(x) = c0 + c1x + · · · + cn−1xn−1 in
F2[x]. For example, the vector(1,0,0,1,1,0) corresponds to the polynomial 1+ x3+ x4.

One of the basic properties of a cyclic codeC is thatC is generated by one of its codewords; in the sense
that there is a codeword inC, represented by the polynomialg(x), such that every codewordc(x) ∈ C is a
multiple of g(x), i.e. c(x) = q(x) · g(x) for some polynomialq(x). Here the identityc(x) = q(x) · g(x)
holds in the quotient ringF2[x]/(xn+1), i.e. we identifyq(x) · g(x)with q(x) · g(x) mod(xn+1). It is well
known that if the polynomialg(x) generates the cyclic codeC of lengthn, theng(x) is a factor ofxn + 1.
(For more details see, e.g. [45].)

Some more useful notations. Thereciprocalof a polynomial f (x) = a0+ a1x+ · · · + am−1xm−1+ amxm,
with am 6= 0, is f ?(x) = am+ am−1x+ · · · + a1xm−1+ a0xm, which is obtained fromf (x) by reversing the
order of the coefficients. Thenf ?(x) = xm f (x−1). Theexponentof the polynomialf (x) ∈ F2[x] is the least
integers such thatf (x) dividesxs + 1.

We start with stating some easy facts about cyclic codes.

Lemma 4.6. LetC be cyclic code of lengthn generated by the polynomialg(x) = 1+α1x+· · ·+αk−1xk−1+
xk in F2[x].

(a) If w(x) = x j + a1x j+1+ · · · + a`−1x j+`−1+ x j+` is in C, then` ≥ k.
(b) If w ∈ C, w 6= 0 andw contains a block ofm consecutive 0’s, thenm< n− k.

In the next theorem we formulate a necessary condition for a cyclic code to be self-dual.

Theorem 4.7. Let a polynomialg(x) of degreek (k ≤ n/2) generate a cyclic codeC of lengthn. Let
g(x) = g1(x) · · · gm(x) be a decomposition ofg(x) to irreducible polynomials. If the reciprocal of any
of gi (x) is not amongg1(x), . . . , gm(x) (especially, none of thegi (x) is self-reciprocal), thenC is weakly
self-dual, i.e.C⊥ ⊆ C.

Now we give some results on cyclic codes that correct burst errors. Aburst of width bis a vector in{0,1}n
whose only nonzero components are amongb successive components, the first and the last of which are
nonzero. (The last componentcn−1 of the vector(c0, c1, . . . , cn−1) is understood to be adjacent toc0.) As
mentioned in the previous section, we say a linear codeC hasburst-correcting ability bif for every burstsw1

andw2 of width≤ b we havew1+w2 6∈ C. The following theorem gives a simple criterion for a cyclic code
to have burst-correcting ability.

Theorem 4.8. Let C be a cyclic code generated by the polynomialg(x) of degreek. If k ≥ n
2 + b, thenC

has burst-correcting abilityb.

The following theorem by Fire [46] and Melas and Gorog [47] (see also [42]) gives a general method to
construct interesting burst-correcting cyclic codes.

Theorem 4.9. Let q(x) generate an [n′, k′] code that has burst-correcting abilityb. Let p(x) be an irre-
ducible polynomial of degree≥ b and exponente such that(p(x),q(x)) = 1 (i.e. p(x) andq(x) have no
common factor). Then the cyclic codeC of lengthn = en′ generated byc(x) = q(x)p(x) has burst-correcting
ability b.
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In the following theorem we construct a small burst-correcting code. The interesting property of this code
is that it isweakly self-dual; the property which is not addressed by the previous theorem.

Theorem 4.10. The polynomialg(x) = 1+ x+ x2+ x4+ x5+ x8+ x9 generates a cyclic [21,12] code
C which has burst-correcting abilityb = 4. Moreover,C is weakly self-dual.

To utilize Theorem 4.9 for producing cyclic weakly self-dual codes that correctb > 4 bursts, we need to start
with small cyclic weakly self-dual codes with burst-correcting abilityb. It appears to be hard to find such
codes with optimal, or near optimal, length. But it is possible to construct small cyclic weakly self-dual codes
that correctrandom terrors. In the next lemma we give a construction for such codes. Although in this way
we do not get optimal codes, the result is enough to rise to an infinite class of burst-correcting codes.

Lemma 4.11. For anyt , there is a binary cyclic weakly self-dual [n, k, 2t + 1] code withn = 2m − 1 and
k = n− tm, wheren > 2(2t− 1)2.

4.2.3. Explicit construction of burst-correcting quantum codes

Thequantum burst-correcting codesare defined naturally. Consider the setE of quantum errors such that
both EX andEZ are bursts of width≤ b. Then any quantum code that hasE-correcting ability is called a
b-burst-correcting code.

First we show that there is a two-dimensional quantum code of lengthn = 15 which corrects burst errors
of width b = 3. From the table given in [48], it follows that to correctt = 3 (random) errors one qubit should
be mapped to at least 17 qubits.

We consider the cyclic [15, 9] codeC generated by 1+ x3+ x4+ x5+ x6. As it is noted in [42], this code
correctsb = 3 burst errors. We show that the dual of this code has the same burst-correcting ability.

The dual codeC⊥ is generated by the polynomial 1+ x+ x4+ x5+ x6+ x9. So the following is a generator
matrix forC⊥: 

1 1 0 0 1 1 1 0 0 1 0 0 0 0 0
0 1 1 0 0 1 1 1 0 0 1 0 0 0 0
0 0 1 1 0 0 1 1 1 0 0 1 0 0 0
0 0 0 1 1 0 0 1 1 1 0 0 1 0 0
0 0 0 0 1 1 0 0 1 1 1 0 0 1 0
0 0 0 0 0 1 1 0 0 1 1 1 0 0 1

 .

We want to show that ifb1 andb2 are two burst of width≤ 3 andb1 6= b2, thenb1 + b2 6∈ C⊥. First
note thatb1 + b2 contains a block of at least five consecutive zeros. Then w.l.o.g. we can assumeb1 + b2 =
(000000?? · · · ?)orb1+b2 = (000001?? · · · ?). If b1+b2 ∈ C⊥, then in the first case we would haveb1+b2 = 0,
i.e.b1 = b2 which contradicts the assumptionb1 6= b2; and in the second caseb1+b2 = (000001100111001)
which is not sum of two bursts of width≤ 3. This completes the proof thatC⊥ corrects bursts of width 3.

Now we show that the all-one vector1 is not in coset of any vector of the formb1 + b2, whereb1 andb2

are bursts of width≤ 3. Assume, by contradiction, that1+ b1 + b2 ∈ C⊥. Sinceb1 + b2 has a block of at
least five consecutive zeros,1+ b1 + b2 is either(111110? ? · · · ?) or (111111? ? · · · ?). In the first case
1+ b1 + b2 is (111110111010001)and in the second case it is(111111011101000). So b1 + b2 is either
(000001000101110)or (000000100010111); which in neither case can be the sum of two bursts of width
≤ 3.

So the desired quantum code consists of|0L〉 =
∑

c∈C |c〉 and|1L〉 =
∑

c∈C |c+ 1〉.
In fact, there is a 3-burst-correcting quantum code with smaller length. This is a [13, 1,5] code. The stabilizer

of this code is defined by a quadratic residue code over GF(4)= {0,1, ω,ω = ω2 }with g(x) = (1+x)g1(x)
as its generator polynomial, whereg1(x) = 1+ωx+ωx3+ωx5+ x6 (see [48] for details on quantum codes
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defined by codes over GF(4)). Here it is enough to show that the cyclic codeC (over GF(4)) generated by
the polynomialg1(x) is a 3-burst-correcting code. Suppose the nonzero polynomialq(x) (of degree≤ 12)
represents a codeword inC that is a sum of two bursts of width≤ 3. Then at least seven coefficients of
q(x) are zero. Therefore, without loss of generality, we can assumeq(x) = 1+ a1x + · · · + a8x8. Hence
q(x) = (1+ ax+ bx2)g1(x), for somea, b ∈ GF(4). But for anya andb the correspondingq(x) is not a
sum of two bursts of width≤ 3.

Now we show the existence of infinite classes of quantum burst-correcting codes.

Theorem 4.12. If there is a binary [n, k] codeC (with k < n
2) such thatC andC⊥ both have burst-correcting

ability b, then there is an((n, 2K )) quantum code withK = n− k−2dlogne−b that corrects all burst errors
of width b.

Corollary 4.13. There are((n, 2k)) quantum codes withn = (2m − 1)(2b− 1) andk = n − m −
2dlogne − 3b+ 1 having burst-correcting abilityb.

For fixed constantb, the above result gives a family of quantum codes of lengthn and dimensionn −
3 logn − O(1) having burst-correcting abilityb. In the next theorem we show forb ≤ 4 we can construct
burst-correcting quantum codes with dimensionn− 2 logn− O(1).

Theorem 4.14. For everym ≥ 7, there is an((n, 2k)) quantum code withn = 21(2m − 1) andk =
n− 2m− 18 having burst-correcting abilityb = 4.

By utilizing Lemma 4.11, we can get a similar result for the caseb > 4. The following theorem shows
how to construct((n, 2K )) quantum codes, withK = n − 2 logn − O(b), for constant burst-widthb; note
however that the constant,O(b), in the preceding expression could be a large function ofb.

Theorem 4.15. For everyb, there is an((n, 2k)) quantumb-burst-correcting code, wheren = (2m′ −
1)(2m − 1), k = n− 2m− 2bm′, 2m′ > 2(2b− 1)2 andm> m′.

4.2.4. Bounds and a new scheme for construction

In this section we present general upper and lower bounds for maximum dimension of a quantum burst-
correcting code.

Theorem 4.16. LetE be a set of errors, andD = {e+e′ | e, e′ ∈ E}. Let 2k be the maximum of dimension
of any non-degenerate quantum code of lengthn that hasE-correcting ability. Then

n− log2 |D| ≤ k ≤ n− log2 |E |.

Corollary 4.17. Let 2k be the maximum of dimension of any non-degenerate quantum code of lengthn
which has burst-correcting abilityb. Then

n− 2 log2 n− 2b≤ k ≤ n− log2(n− b+ 2)− 2b− 3.

Next we present a new scheme for constructing quantum codes from classical linear codes. By utilizing
this method, for fixed constantb, we obtainb-bursts-correcting quantum codes of lengthn with dimension
n− log2 n− O(1). These are almost optimal codes (compare with the bound given in Corollary 4.17).

Theorem 4.18. If there is a(3b+ 1)-burst correcting binary [n, k] cyclic codeC such thatC is weakly
self-dual, then there is ab-burst-correcting((n, 2k)) quantum code.
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Proof. Suppose the(n− k)× n matrix H is a parity check matrix forC. Let H→m denote the matrix that is
obtained fromH by shifting (cyclically) the columnsm times to the right. Note thatH→m is also a parity
check matrix ofC, becauseC is cyclic. Now, consider the stabilizer defined by the matrix

G = [H + H→b | H + H→2b+1
]
.

It is easy to check thatG is indeed a totally singular matrix. Supposee = (e1 | e2) ande′ = (e′1 | e′2) are
bursts of width≤ b, ande 6= e′. Let

w = e1+ e′1+ (e1+ e′1)
→b + e2+ e′2+ (e2+ e′2)

→2b+1,

wheree→b denotes the vector obtained by cyclically shiftinge to the rightb times. Then it is easy to check
thatw 6= 0 andw is the sum of two bursts of width≤ 3b+ 1. Sow 6∈ C and

G · (e+ e′)T = H · wT 6= 0.

Now the theorem follows from Theorem 4.5. 2

To apply the above theorem, we need weakly self-dualb-burst-correcting binary codes with arbitrary length.
For b ≤ 4, Theorem 4.10 gives explicit construction of such codes. In general, we can apply the following
theorem.

Theorem 4.19([49]) . For everyb and for every square-free polynomiale(x) of degreeb− 1 and of index
me such thate(0) 6= 0 and for every sufficiently largem ≡ 0(mod me), a primitive polynomialp(x) of
degreem exists such thate(x)p(x) generates ab-burst-correcting code of lengthn = 2m− 1 and dimension
k = n−m− b.

To get weakly self-dual codes, choosee(x) to be any primitive polynomial of degreeb−1. Thene(x)p(x)
generates a weakly self-dualb-burst-correcting code, because no primitive polynomial is self-reciprocal. Thus
we get the following bound for burst-correcting quantum codes.

Theorem 4.20. For everyb and for sufficiently largen = 2m − 1 (wherem ≡ 0(mod mb) for some
fixed integermb depending only onb), there areb-burst-correcting quantum codes of lengthn and dimension
n−m− 3b+ 1.

5. Conclusion

In this paper, we have discussed specific examples of physicalnanoelectronicmodels for reversible and
quantum gates. Since these systems are vulnerable to ubiquitous decohering perturbations, we have also
studied a number of quantum error control codes that can correct some of the errors arising from decoherence.
Some new results on quantum error-correcting codes have been presented. In the spirit of Landauer’s untiring
efforts to instil truth in advertising, we certainly admit the serious problem of decoherence, but hope that
quantum error-correcting codes will pave the way towards a practical solution.
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