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Recently, it has been shown that the thermoelectric figure of merit is strongly enhanced in quantum
wells and superlattices due to two-dimensional carrier confinement. We predict that the figure of
merit can increase even further in quantum well structures with free-surface or rigid boundaries.
This additional increase is due to spatial confinement of acoustic phonons and corresponding
modification of their group velocities. The latter leads to an increase of the phonon relaxation rates
and thus, a significant drop in the lattice thermal conductivity. ©1998 American Institute of
Physics. �S0021-8979�98�03023-0�

I. INTRODUCTION

The search for superior thermoelectric materials gener-
ally requires finding conditions such that the thermoelectric
figure of merit

ZT�
S2�T

�ph��e
�1�

is as large as possible. Here,S is the Seebeck coefficient,� is
the electrical conductivity,�ph is the lattice�phonon� thermal
conductivity,�e is the electronic thermal conductivity, andT
is the absolute temperature. Most of the methods to improve
ZT were formulated as early as the 1960s, and usually could
be reduced to the requirement to limit the phonon propaga-
tion while not significantly deteriorating electron transport
through the sample.1

A rebirth of the field of thermoelectrics2 was brought
forward by the emergence of large numbers of new artifi-
cially synthesized materials, including different types of
semiconductor low-dimensional structures. Low-dimensional
confinement allows for more degrees of freedom for maxi-
mizing ZT. The experimentally observed increase of the See-
beck coefficient in PbTe/Pb1�xEuxTe and SiGe/Si multiple-
quantum well structures gives apparent confirmation of the
usefulness of low dimensionality.3

Theoretical predictions4,5 of a strong enhancement of the
figure of merit for semiconductor superlattices and quantum
wells were based on the modification ofke andS2� product
due to the spatial confinement of carriers and the correspond-
ing change in the carrier density of states. Meanwhile these
predictions ignored the effects of spatial confinement of
phonons, and used bulk values of� l . This approximation is
valid for quantum well structures with boundaries made out
of a material with similar crystalline and elastic properties
where phonon modes extend through the boundaries and do
not differ significantly from the bulk. However, it should be
pointed out that even in superlattices of similar materials, the

phonon transport can be modified due to miniband formation
and the emergence of mini-Umklapp processes.6

The situation is significantly different in the quantum
wells, which are either free standing or embedded within the
rigid material with distinctively different elastic properties.
Here, phonon dispersion and group velocities are changed
due to the spatial confinement induced by the boundaries.
The phonon confinement affects all phonon relaxation rates,
and makes the thermal transport properties of nanostructures
rather different from those of bulk material. These conditions
are characteristic of many realistic experiments with thermo-
electrics.

In this paper, we study how spatial confinement of
acoustic phonon modes changes the thermoelectric figure of
merit of quantum well structures via modification of the lat-
eral lattice thermal conductivity. The paper is organized as
follows. In Sec. II we present the theory. Results of the nu-
merical simulations and discussion are given in Sec. III. We
present our conclusions in Sec. IV.

II. THEORY

A. Thermoelectric figure of merit

As an illustrative example, we will consider a bismuth–
telluride quantum well structure. We have chosen this mate-
rial because it has bulk superior thermoelectric properties.
The model presented will, of cause, be applicable for other
material systems. In order to have a pronounced phonon con-
finement effect, the quantum well structure�thin film� should
be embedded within material with distinctively different
elastic �crystalline� properties. One of the possibilities is a
Bi2Te3 film on polyimide or mica as described in Ref. 7. In
the case of polyimide, the quantum well boundaries can be
considered as free surface since they are surrounded by the
air and soft polymer. Multiple quantum well structures can
also be made this way by sandwitching bismuth–telluride
thin films between layers of polymer or other ‘‘soft’’
dielectric.7,8 The well width W in such structures should bea�Electronic mail: alexb@ee.ucla.edu
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rather small�less than 50 nm� for strong phonon confinement
effects. The geometry of the structure and notations are
shown in Fig. 1.

Our model will use the derivations of thermoelectric pa-
rameters for two-dimensional�2D� structures given in Ref. 4.
However, we do not assume thatkph equals to its bulk value
kph

bulk . Rather, we calculatekph as a function of the well width
W and temperatureT. A significant dependence ofkph on W
is expected from the spatial confinement of phonons partici-
pating in thermal transport, mainly through the change of
their group velocity. Since we are interested in operation at
the room and above temperatures, no phonon drag effect will
be considered. We also assume that the confinement of pho-
non modes does not strongly affect electron–phonon scatter-
ing rates. The latter was recently shown in Ref. 9.

For conduction along thex axis, one can write in the
one-band material approximation

S��
kB

e
�2F1 /F0��2D* �, �2�

��
1

2�W� 2kBT

	2 � �mxmy�1/2F0e
x , �3�

ke�
��
	2

4�W � 2kBT

	2 � 2

�my /mx�1/2kB�3F2�4F1
2/F0�, �4�

�ph�
kB

2�2v
� kB

	 � 3

T3�
0

�/T �C�4e�

�e��1�2
d�. �5�

HerekB is the Boltzmann constant,	 is the Plank constant,e
is the electron charge,mx,y ,z are three components of the
effective-mass tensor,
x is the mobility along thex axis,
��
(�
xmx /e) is the electron relaxation time which is as-
sumed to be constant as in Ref. 4,� is the Debye tempera-
ture,	� is the phonon energy,��	�/kBT, �C��(W,T) is
the combined phonon relaxation time due to all resistive pro-
cesses,v is the velocity of sound,�2D* is the reduced chemi-
cal potential for quasi two-dimensional structures, andFp are
the Fermi–Dirac functions. The reduced chemical potential
is defined�by analogy with the electochemical potential� as

�2D* �
�2D

kBT
�

1

kBT� �3D�
	2�2

2mzW
2� , �6�

where three-dimensional chemical potential�3D is deter-
mined by the doping and related to the Fermi energyEF and
density of statesN(E) as

�3D�EF�
�2kB

2T2

6

d

dE
� lnN�E ��

�EF�
�2kB

2T2

12EF
. �7�

Equations�2�–�4� are valid for anisotropic material with a
parabolic band and are not restricted to semiconductors
alone.

B. Lattice thermal conductivity

To calculate the lattice thermal conductivity in Eq.�5�,
we need to determine the scattering rate�C

�1 as a function of
the well width and temperature. It is well known that only
those processes which do not conserve crystal momentum
contribute to the lattice thermal resistance.10 These pro-
cesses, referred to as resistive, are boundary scattering, mass-
difference scattering, scattering on dislocations, and three-
phonon Umklapp scattering processes. Equation�5� which
we added to the thermoelectrics 2D formalism of Eqs.�2�–
�4� is written under the assumption that such resistive pro-
cesses are dominant over the normal phonon processes.

Limiting our consideration to the above mentioned resis-
tive processes, we proceed with the Matthiessen’s rule

1

�C
�

1

�U
�

1

� I
�

1

�D
�

1

�B
, �8�

where�U , � I , �D , and�B are the relaxation times due to the
U-processes through all allowed channels: the mass-
difference�or isotop� scattering, scattering on dislocations,
and boundary scattering, respectively. In order to evaluate
relaxation rates of Eq.�8�, we should use the actual disper-
sion relations�for the Umklapp processes� and group veloci-
ties vg�vg��(q)� for phonons in a quantum well (q is the
phonon in-plane wave vector�. Modification of the wave vec-
tor selection and frequency conservation rules due to the spa-
tial confinement should also be taken into account.

The phonon relaxation mechanism which is strongly af-
fected by the change in the average phonon group velocity is
the mass-difference scattering. The phonon relaxation rate
due to interaction with atoms of different masses is given
by10

1

� I
�

V0�4

4�vg
3 �

i
f i�1��M i /M ��2, �9�

whereV0 is the volume per atom,M i is the mass of an atom,
and f i is the fractional content of atoms with massM i which
is different from M. Writing Eq. �9� we tacitly neglected
additional terms associated with the difference of stiffness
constants of the nearest-neighbor bonds. The phonon scatter-
ing on dislocations can be evaluated using the relation10

FIG. 1. Geometry of the quantum well structure with free-surface bound-
aries used for model simulations�upper�. Geometry of the corresponding
experimental structure�lower�.
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whereNd is the number of dislocation lines per unit area, and
a is the lattice constant.

The expression for�U of a thermal mode with the wave
vector q in the single-mode relaxation rate approximation
can be found in Ref. 11. A detailed study of the effects of
phonon confinement on three-phonon Umklapp processes
and, correspondingly, on�U was reported elsewhere.12

Boundaries of nanostructures also contribute to phonon
scattering. Since boundary scattering is almost independent
of frequency and its relevant contribution becomes signifi-
cant at low temperatures�not considered in this paper�, we
limit our consideration to a simple estimate of the phonon
relaxation rate from the semiempirical relation

1

�B
�

vg

W
. �11�

The phonon relaxation due to scattering from the grain
boundaries is not included in our model. This mechanism is
irrelevant for crystalline bismuth telluride and for the poly-
crystalline material, in which the grain size is usually bigger
than the phonon mean free path andW considered here.

C. Confinement of acoustic phonons

In order to evaluate the relaxation rates in Eqs.�8�–�11�,
we have to determine the dependencies ofvg(q) and �(q)
on the well widthW. The dispersion of the confined phonon
modes can be found in the continuous medium approxima-
tion by solving the elasticity equation with given boundary
conditions �free-surface boundaries�. In order to do it, we
follow prescriptions of Refs. 13 and 14. Since here we are
mostly interested in the value of the average phonon group
velocities, we will briefly outline the procedure and present
the results.

The normal components of the stress tensor on the free-
surface boundaries must vanish. These boundary conditions
bring about a significant change to the phonon dispersion and
group velocities as compared to bulk. One should note here
that a significant modification of phonon modes can be at-
tained not only in a free-surface nanostructure but also in a
nanostructure embedded within rigid material. In this case,
the normal components of the stress tensor are unrestricted
but the displacement is zero at the boundary. This corre-
sponds to the clamped-surface boundary conditions.15 As we
mentioned in the beginning of Sec. II, our choice of the
material system corresponds to the free-surface boundary
conditions.

Solving numerically the elasticity equation, we first find
confined phonon modes�n

t (q) for a particular well width
and material parameters and then, by numerical differentia-
tion, determine the group velocities. Subscriptt defines the
type of the phonon modes which are characterized by their
distinctive symmetries�shear, dilatational, and flexural
modes�. The phonon group velocity for each mode type in
the nth branch is defined asvg

t,n���n
t /�q.

III. NUMERICAL RESULTS

A. Lattice thermal conductivity

The phonon group velocities as functions of the phonon
wave vectorq along the propagation direction are presented
in Fig. 2. The typical results are shown for the lowest dila-
tational �upper part� and shear�lower part� type modes (n
�1,•••,8) in a 100 Å wide quantum well. Due to spatial
confinement, many more branches of each polarizational
type are present in the quantum well as compared to the
bulk. One can easily see the general trend: the higher the
mode number the smaller the group velocity over the range
of wave vector values. The group velocity of thermal modes
decreases to as much as 3–4 times (n�40 for W�100 Å at
room temperature�. For comparison the average sound veloc-
ity of the bulk is shown by dashed lines. The change of
polarization types and the���(q) dependence due to con-
finement brings also modifications of the energy and mo-
mentum conservation laws. The latter is important for calcu-
lation of the lattice thermal conductivity of quantum wells
and was discussed by us in Ref. 12.

Once the phonon dispersion and group velocities are cal-
culated, we evaluate phonon scattering rates and lattice ther-
mal conductivity for a bulk Bi2Te3 slab and quantum wells
over the range of temperatures and well widths. The material
parameters used in simulation are summarized in Table I�the

FIG. 2. Group velocity as a function of in-plane wave vector for the dilata-
tional �upper� and shear�lower� modes in a 100 Å wide bismuth–telluride
quantum well. The result are shown for eight lowest phonon modes. The
dashed lines show the average group velocity for bulk material. It is easy to
see that the phonon group velocities are lower than in bulk, and decrease
with increasing mode number.

TABLE I. Material parameters for Bi2Te3 used for simulation.

a�4.3835 Å
a��30.360 Å
mx�0.012m0

my�0.081m0

mz�0.32m0

v�3�103 m/s

x�1500 cm2/V s

M (Bi) �3.47�10�25 kg
M (Te)�2.12�10�25 kg
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values are after Refs. 16 and 17�. The overall phonon scat-
tering rate increases in a quantum well. A significant drop in
the average phonon group velocity�see Fig. 2� strongly in-
creases phonon relaxation rates via mass-difference scatter-
ing and scattering on dislocations as expected from Eqs.�9�
and �10�. The three-phonon Umklapp scattering is also be-
coming more effective. Boundary scattering�or grain bound-
ary scattering� is less sensitive to the phonon group velocity
change and just slightly offsets the final result. One impor-
tant thing to note is that by improving crystal and surface
quality one can reduce the impurity and boundary scattering
rates but not the Umklapp scattering rate. The increase of the
Umklapp process scattering rate in a quantum well is a direct
result of the modification of phonon dispersion due to spatial
confinement of the phonon modes. In Fig. 3 we show the
lattice thermal conductivitykph(W,T) as a function of the
temperature for different quantum well widths and the bulk
material. One can see thatkph for a 100 Å wide well is much
smaller than that of a bulk, particularly at room and slightly
below room temperatures.

In order to verify the accuracy of our model forkph, we
apply it to different material systems and compare the results
with available experimental data. We found that our numeri-
cal results are consistent with experimental data presented in
Ref. 7. It was reported there that the lattice thermal conduc-
tivity of the Bi2Te3 films �0.5–3
m thick� is considerably
lower thankph of bulk crystals of the same solid solution. At
room temperature,kph�1.2 W/m K was measured as com-
pared to the bulk value of 1.7 W/m K. It is reasonable to
expect that further decrease of the film thickness will bring
about an additional decrease in the thermal conductivity. Ex-
perimentally observed temperature dependence in Ref. 7 is
very close to that calculated on the basis of our model.

B. Thermoelectric figure of merit

After determiningkph�k(W,T), we can calculate ZT us-
ing Eqs.�1�–�5�. Material parameters used for simulation are
the same as in Table I. To obtain high ZT, we optimize�2D*

by choosing an appropriate carrier concentration�doping
level� for a particular well width. The optimum�2D* occurs
when we start with�3D slightly above the conduction band
which corresponds to a partially degeneraten-type semicon-
ductor. We also determine that�2D* lies below the second
confined electron state�one-band model�. The Fermi–Dirac
functions are calculated using the known expansions18 for
integerp.

The thermoelectric figure of merit ZT as a function of
quantum well width is shown in Fig. 4 with and without
phonon confinement effects. The calculations were per-
formed for room temperature. As one can see from Fig. 4,
the decrease ofkph due to the spatial confinement of phonons
in a quantum well embedded within a material of different
elastic properties leads to a noticeable increase of ZT as
compared to the case without the phonon confinement. This
additional increase is particularly significant for the interme-
diate and thin quantum wells withW�90– 300 Å. The gen-
eral trend of increasing ZT with the reduction of the well
width is characteristic for both cases. The latter is expected
due to the increased carrier confinement in narrower wells
and basically is the result of the effectively 2D density of
states for free carriers.3–5 The additional increase of ZT due
to the confinement of phonons can be as large as two times
the value without the phonon confinement for a 90 Å wide
quantum well with free-surface boundary conditions�room
temperature�. This additional increase is clearly seen in Fig.
4.

Although our model assumed a quantum well with free-
surface boundary conditions, the conclusions about increased
ZT due to the phonon confinement can be extended to quan-
tum wells with clamped-surface boundary conditions�rigid
boundaries�. The lowest confined phonon modes in quantum
wells embedded within rigid materials are higher in energy
than those in a free-standing quantum well, but the overall
behavior and the decrease of the group velocities are very
similar in both cases. The model presented here can be de-

FIG. 3. Lattice thermal conductivity of bismuth–telluride as a function of
temperature for bulk material and three different quantum wells. The calcu-
lations are performed for quantum wells with free-surface boundaries. Sig-
nificant drop of thermal conductivity is due to spatial confinement of acous-
tic phonons.

FIG. 4. Thermoelectric figure of merit ZT of bismuth–telluride as a function
of quantum well width. The results are shown for quantum wells with con-
fined �denoted by A� and bulk phonons�denoted by B�. The figure of merit
for bulk bismuth–telluride calculated with the same material parameters is
also shown. Additional increase of ZT arises from the decrease of the lattice
thermal conductivity due to phonon confinement.
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veloped further to include mixed boundary conditions and
the interface quality.

The most vulnerable approximation used in our model
as well as in models of Refs. 4 and 5 is the assumption
of a constant electron relaxation rate. This led to the use
of the constant carrier mobility which was equal to that
of the bulk material. Our estimations show that the error
due to this assumption may significantly offset the value of
ZT for W�15– 20 Å, although for wider wells, the treatment
is acceptable. A rigorous self-consistent theory would re-
quire the solution of the Boltzmann equation with the scat-
tering probabilities determined for confined electron–
confined phonon interaction. Such work is currently in
progress.19

IV. CONCLUSIONS

We have studied the effects of phonon spatial confine-
ment on the thermoelectric figure of merit for quantum well
structures. As a prototype structure for illustrating the effect,
we have used a free-standing bismuth–telluride thin film,
although our model can be extended to other quantum well
structures embedded within material with distinctly different
elastic properties. It was shown that strong modification of
the phonon group velocities and dispersion due to spatial
confinement leads to a significant increase of the phonon
relaxation rates and, as a result, a strong drop in the lattice
thermal conductivitykph. From the numerical calculations,
we predicted that due to the decrease ofkph, the thermoelec-
tric figure of merit experiences an additional increase�factor
of 2 for 90 Å wide well at 300 K� as compared to the struc-
tures with bulk phonons. The active�not via temperature�
phonon engineering discussed in this paper may eventually
lead to the improvement of thermoelectric properties of the
nanostructured materials.
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