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ABSTRACT

In this paper we review our work on thermal and thermoelectric properties

of semiconductor low-dimensional structures, e.g. quantum wells and

quantum wires, with emphasis on the effects of spatial confinement of

acoustic phonons. We particularly concentrate on calculation of the

phonon relaxation rates in mass-difference, Umklapp, point defect, and

dislocation scattering processes that takes into account confinement of

phonon modes. A possibility of device performance enhancement via

phonon engineering and thermoelectric applications of low-dimensional

structures are also discussed.

I. Introduction

Thermal properties of semiconductor nanostructures and superlattices have recently

attracted a lot of attention. This is primarily due to two major factors. The first one is a

continuous scaling down of the feature sizes in microelectronic devices and circuits,
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which leads to an increase in power dissipation per unit area of semiconductor chip.

Under such conditions, the influence of size effects on thermal conductivity becomes

extremely important for device design and reliability [1]. The problem of thermal

management is even more severe for photonic devices such as vertical cavity surface

emitting lasers in which the heat generation density reaches 106 W/cm3. The second

factor is a rebirth of the field of thermoelectric materials, which has been brought about

by the emergence of large numbers of new artificially synthesized materials, including

those structured on an atomic scale [2]. In order to dissipate the increasing amount of heat

from the chip area, one has to engineer material parameters or structure geometry in such

a way that thermal conductivity is large along particular directions. To improve

performance of thermoelectrics, one needs to achieve low thermal conductivity. These

are two contradictory demands, but both can be approached with appropriate

modification of phonon modes, e.g. phonon engineering.

It was shown earlier that phonon transport in superlattices can be significantly modified

due to formation of minibands and emergence of the mini-Umklapp process, a new type

of the Umklapp scattering processes associated with transitions between the mini-

Brillouin zones [3]. A dramatic suppression of the perpendicular thermal transport in

superlattices at high temperatures was also predicted in Ref. [4]. In the structures

considered in Ref. [3], the modification of phonon transport comes from the periodicity

(additional to the crystal lattice periodicity) in the direction of superlattice layering. In

such a case, the mini-reciprocal lattice vectors associated with superlattice minizones

give rise to mini-Umklapp processes which contribute to the thermal resistance. The

situation is quit different in single quantum wells, which are either free-standing or

embedded into material with distinctively different elastic properties. Here, the phonon

dispersion changes due to the phonon spatial confinement induced by the boundaries. In

this review, we address the issue of how spatial confinement of acoustic phonon modes

directly modifies the lateral lattice thermal conductivity of quantum wells and quantum

wires with rigid or free-surface boundaries.
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Recently, several groups reported the results of experimental investigation of the lateral

thermal conductivity kph of thin films [5,6]. In all cases the strong drop was observed.

Zheng at al. [5] carried out measurements using a suspended micro structure, and found

an extremely large reduction of kph  (more than an order of magnitude) in the temperature

range from T= 293 K to T=413 K. Such a huge drop in thermal conductivity can not be

attributed entirely to boundary scattering and structure imperfections, and is likely related

to modification of phonon modes and corresponding change in the thermal transport.

Geometry of a quantum well structure, material parameters and temperature regime used

in the theoretical models presented here approximately correspond to the conditions of

the experiments.

The development of sophisticated pattering and self-assembly techniques for quasi one-

dimensional (1D) semiconductor structures (quantum wires) [7-8] has stimulated a large

body of new work in semiconductor physics over the last ten years. Quantum wires with

widths down to 10 nm and small size fluctuations have been fabricated by regular

electron beam lithography and wet etching [9]. Much of this interest to quantum wires

was further stimulated by the possibility of novel “low dimensional” physics related to

spatial confinement of carriers and phonons [10-11], as well as applications in electronic

and optoelectronic devices. It has also been suggested that the thermoelectric figure of

merit ZT=S2σ/(kph + ke) can be significantly enhanced in quantum wells [12] and

quantum wires [13] because of strong carrier confinement (where S is the Seebeck

coefficient, σ is the electric conductivity, kph is the lattice thermal conductivity, and ke is

the electronic thermal conductivity). An increase to the thermoelectric figure of merit

may also come from the drop of the lattice thermal conductivity in low-dimensional

structures due to the increased phonon-boundary scattering [14]. Experimental evidence

of the thermal conductivity drop in thin Si films has also been demonstrated [15].  Most

recently Balandin and Wang [16] and Khitun et al. [17] have shown that an additional

increase to ZT can be brought by the spatial confinement of acoustic phonons in thin

films (quantum wells) [16] and quantum wire structures [17] embedded within material

of distinctively different elastic properties. Thus, low-dimensional confinement of both

carriers and phonons allows for more degrees of freedom in maximizing ZT.
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The experimentally observed increase of the Seebeck coefficient in SiGe/Si multiple-

quantum well structures has already given a confirmation of the advantages of low

dimensionality [18]. To date, most of the experimental attempts to attain increased

thermoelectric characteristics in low-dimensional structures were carried out with

semiconductor superlattices or multiple-quantum well structures. Utilization of quantum

wires for thermoelectric applications would require a two-dimensional array of quantum

wires fabricated using e-beam lithography or self-assembly techniques. Difficulties of

high-quality fabrication of such an array explain the scarcity of the experimental data for

quantum wires. As a prototype system for theoretical study of thermal conductivity we

have chosen  silicon quantum wires. This choice was made for two reasons. Firstly, Si/Ge

material system (in its bulk or nanostructured form) has already shown a great promise

for high-temperature thermoelectric applications. Secondly, the problem of lattices

thermal conductivity in silicon quantum wires is also important in a view of continuous

down scaling of the device feature size, which will lead to the increased heat dissipation

per unit area. Further development of the deep-submicron technology and growing

utilization of ultra-thin silicon-on-insulator (SOI) structures make the problem of heat

management of nano-size structures particularly acute.

The paper is organized as follows. In the next two sections we describe calculation of the

lattice thermal conductivity which takes into account modification of the acoustic phonon

dispersion due to spatial confinement. The model is based on the proper modification of

the corresponding bulk formulas and phonon group velocities obtained from the

continuous medium approximation with specific boundary conditions. It also takes into

account new selection rules for three-phonon Umklapp processes imposed by emergence

of additional phonon dispersion branches. Discussion and comparison of the theoretical

results with available experimental data are given in section IV.  In sections V - VII, we

present the theory of confined phonon transport in semiconductor quantum wires.

Confinement of acoustic phonons and corresponding change in their group velocity lead

to an increase in the phonon relaxation rates and, thus to the drop in thermal conductivity.



                                           Alexander Balandin, Phys. Low-Dim. Structures., ½, 1 (2000).

5

Section VIII presents a discussion of the possibility of enhancement of the thermoelectric

figure of merit via phonon engineering. We give our conclusions in section IX.

II. Confined phonon transport in quantum wells

Thermal conductivity of semiconductors is the sum of the lattice (phonon) kph and

electronic ke components. The characteristic ratio of these two obtained for doped

semiconductors is ke/kph ~ ½. For intrinsic silicon structures this ration is even lower.

Thus, for simplicity, in this review we will only discuss the lattice (phonon) contribution

to the thermal conductivity and neglect its electronic part. We consider a generic quantum

well structure (see Fig. 1) at relatively high temperatures so that three-phonon interaction

is expected to be the dominant scattering mechanism limiting heat transfer. It is well

known that the normal three-phonon scattering processes (N-processes) in which the total

momentum is conserved cannot by themselves lead to a finite thermal resistance,

although they influence it indirectly by redistributing phonon modes [19-20]. Only

processes, which do not conserve crystal momentum, contribute to the lattice thermal

resistance. Such processes, further referred as resistive, are boundary scattering, impurity

scattering, and three-phonon Umklapp scattering process (U-process) in which the sum of

phonon wave vectors is not conserved but changes by a reciprocal-lattice vector. Impurity

scattering, in its turn, can be separated for isotope scattering arising from the presence of

atoms with different mass dislocation scattering, and scattering on atoms of different

elements. In a high quality material, all of these impurity scattering mechanisms can be

strongly reduced except for the isotope scattering. Due to this reason, we will be

primarily interested in examining the effects produced by phonon confinement on the

resistive processes, which include the three-phonon Umklapp processes, isotope

scattering, and boundary scattering.

The lattice thermal conductivity can be written as [19-20]

kph=(1/3)ΣS(ω)vgΛ(ω)dω, (1)
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where S(ω) is the contribution to the specific heat per frequency interval from phonons of

frequency ω, Λ(ω) is the phonon mean-free-path (attenuation length), and vg is the

phonon group velocity. Using the relaxation-time methods the expression for kph we can

be further rewritten as [20-22]

(2)

where  x= �ω/kBT,  kB is the Boltzmann constant, � is the Plank constant, θ  is the Debye

temperature, τC  is the combined relaxation time, and υg  is the phonon group velocity.

The above equation for thermal conductivity is valid under the assumption that the

resistive scattering mechanisms, which do not conserve crystal momentum, are dominant

[19]. These are the processes that contribute to the lattice thermal resistance. The general

expression for the lattice thermal conductivity, which includes an additional term for the

normal scattering processes, can be found in Ref. [19-20].

The combine scattering relaxation time is found from Matthiessen’s rule

(3)

where τC  is the combined phonon relaxation time due to different scattering mechanisms

which are dominant in silicon at room temperature and above. Particularly, the

mechanisms include Umklapp scattering (τU), boundary scattering (τB), mass-difference

(or isotope) scattering (τM) and resonant scattering (τR) for a silicon with a high

concentration of impurity atoms. In order to determine the lattice thermal conductivity,

we calculate all phonon relaxation times in a low-dimensional structure taking into

account their modification due to spatial confinement of phonon modes. Mass-difference

scattering arises due to the presence of atoms with a mass different from the average

atomic mass in a semiconductor. Different mass can come from the isotopes of particular

elements or impurity atoms. In the latter case, the difference in stiffness constants
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between the impurity-host atoms and the host-host atoms, as well as the difference in the

atomic volume of the impurity atoms should also be included in the phonon scattering

rate expression. We use the standard formula for the mass-difference scattering but

introduce one important modification – group velocity dependence on the structure

geometry and boundary conditions. The mass-difference scattering rate is written as [19-

20]

(4)

where V0 is the volume per atom, ω is the phonon frequency. The form-factor ΓM depends

on fraction of impurities in the host material, as well as mass, volume, and stiffness

constant difference between the host atom and the impurity (isotope) atom. The exact

expression and numeric values can be found in Ref. [17]. Phonon confinement effects

enter the equation for the mass-difference scattering rate through modification of the

phonon group velocity, which has to be calculated for each particular geometry and

boundary conditions [16, 23, 24]. Since in nature silicon always contains a mixture of

three main isotopes (92% of 28Si, 4.6% of 29Si, 3.1% of 30Si), the isotope scattering

significantly contributes to the thermal resistance of the material. The boundary scattering

in this model is treated in the Casimir limit [25], with the phonon-boundary scattering

rate presented as

(5)

Resonance scattering is a process in which phonons interact with some localized modes.

Under certain conditions, the impurities or point defects in a host semiconductor, which

have some internal frequency of oscillation ω0, can give rise to the resonance absorption

on this resonance frequency [26]

(6)
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where R depends upon the concentration of the impurities (point defects) and Ω is related

to damping. We will illustrate the resonant scattering effects using the silicon -

germanium materials system as an example in section VII when we will consider high

concentration of Ge impurities. In this section we assume intrinsic Si quantum well, and

disregard the resonance frequency term. The single-mode relaxation rate of the U-process

for a thermal mode q have been derived by Klemens using the first-order perturbation

theory [20-21]. Since the equations are rather complicated, they are not reproduced here.

Phonon confinement effects enter the relaxation rates in the U-process via modification

of the phonon group velocity and mode selection rules [16].

In order to evaluate relaxation rates for all the above processes, one should use the actual

dispersion relations and group velocities, vg = vg(ω(q)), for phonons in a quantum well.

The modification of wave vector selection and frequency conservation rules due to the

spatial confinement should also be taken into account. Evaluation of the single-mode

relaxation rate of the mode q, requires the integration over all possible q modes. The

outline of the method to calculate dispersion of confined phonons and their group

velocity is given in the next section. Details of the calculation of vg = vg(ω(q)), and 1/τU

have been presented in Ref. [16].

III. Phonon dispersion and group velocities in quantum wells

Most of the heat in silicon at room temperature or above is carried by the acoustic

phonons with the wave vectors q close to the center of the Brillouin zone. In this region

of the q-vector space, we can determine the phonon dispersion in the elastic continuum

approximation. In order to calculate the phonon dispersion and phonon group velocities

one has to solve the elasticity equation using the regular approach outlined in Ref. [27-

29]. The elasticity equation is written in a vector form as follows

(7)
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where sl = (λ + 2 µ)/ρ  and  st = µ / ρ  are the velocities of longitudinal and transverse

acoustic phonon modes in bulk semiconductors and  λ, µ, ρ  are Lame constants and ρ is

the density. For Si, sl=9.04 x 105 cm/s and st=5.34 x105 cm/s. The normal components of

the stress tensor on the free-standing quantum well must vanish. These boundary

conditions bring about a significant change to the phonon dispersion and group velocities

as compared to bulk. One should note here that a significant modification of phonon

modes can be attained not only in a free-standing quantum well but also in a quantum

well embedded in rigid material (Si3N4 and SiO2 for example) or in any other

heterostructure with relatively large difference of elastic properties. In the case of a

quantum well embedded in rigid material, the normal components of the stress tensor are

unrestricted but the displacement u is zero at the boundary. This corresponds to the

clamped-surface boundary conditions [27].

There are three different types of confined acoustic modes in a quantum well

characterized by their distinctive symmetries [27]: shear (S) waves, dilatational (D)

waves, and flexural (F) waves. The S modes are similar to the transverse (T) modes in

bulk semiconductor and have only one non-zero component of the displacement vector

u=(0, uy, 0) which is perpendicular to the direction of wave propagation, q||=(qx,0),  and

lies in the plane of the quantum well. The dispersion relation for the S modes can be

written as ωn=st(qx
2+ qz,n

2)1/2, where subscript n denotes different branches of the same

polarization type, and the qz,n is quantized as qz,n=πn/W. The D and F phonon modes have

two non-zero components u=(ux, 0, uz) with dispersion relation given by ωn=sl(qx
2+ql

2)1/2

where the set of parameters ql defines different branches of the same polarization denoted

by subscript l. Since these types of confined waves have a component in the direction of

propagation, they can be viewed as a modification of the bulk longitudinal (L) mode.

Solving numerically the elasticity equation, one can find confined phonon modes for a

particular well width and material parameters and then, by numerical differentiation,

determine the group velocities. The phonon group velocity in the n branch is defined as

vg(ω)= dωn/dq. The dispersion relation for the phonons of D and S modes for a 10 nm

wide Si quantum well are shown in Fig. 2 and Fig. 3, respectively. Corresponding group
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velocities are the slopes of the phonon dispersion branches presented in Figs. 2 and 3. It

is easy to see that there are more dispersion and velocity branches for each polarization

type as compared to the bulk, and group velocities of all branches decrease. The higher

the mode number the smaller the group velocity.

The change of polarization types and the ω(q) dependence brings also modifications of

the energy and momentum conservation laws [23]. It is known that for isotropic

semiconductor only two general types of processes are allowed: T+T �� L, or  L+T

�� L. This restriction follows from the requirement that (i) all three interacting modes

cannot belong to the same polarization branch, and (ii) the resultant mode should be

above two initial (interacting) modes. It turns out that for confined acoustic phonons, the

D mode is almost always above the S mode corresponding to the same branch n.

Comparing dispersion for S and D modes for a 10 nm wide Si quantum well, one can see

that only for a small fraction of phonons with in-plane wave vectors close to the zone

center, some branches of the D mode may have a smaller energy than that of the

corresponding S mode [16]. Thus, the processes Dn+Sn �� Dn and Sn+Sn �� Dn  are

allowed and can be treated by analogy with the bulk processes or  L+T  �� L and T+T

�� L, respectively. In this model calculations we have neglected the S and D mode

intermixing close to the zone-center. More precise treatment would require separation of

the frequency range where the S mode is higher in energy than the D mode, and

considering Dn+Sn �� Sn as an allowed process. Details of the calculation procedure for

U-processes have been reported by Balandin and Wang [16]. In their numerical

calculations they have neglected optical phonon modes since for Si, particularly in

<110> direction, their contribution in thermal transport is less significant than that one of

the confined acoustic phonon modes. Although, for some material systems (like LiF or

NaF), the optical dispersion curve intercepts all longitudinal bulk modes in all directions -

<100>,  <110>,  <111>  - and thus has to be included. Since optical phonon modes are

not significantly affected by spatial confinement, the situation in quantum wells is not

expected to be different from the bulk.
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Finally, the phonon scattering rates have been evaluated for a bulk Si 10 µm thick slab

(bulk) and Si 10 nm and 155 nm wide quantum wells. The material parameters used in

simulation were the following: the lattice parameter a=5.45 A, density ρ=2.42 x 103

kg/m3, mass of an atom M=46.6 x 10-27 kg, the number of atoms per unit cell na ~ 7.3,

Gruneisen parameter γ=0.56, θ=625 K, and the isotope factor Γ x 104 = 2.64  for three Si

isotopes. In the case of bulk material, the U-process is a dominant scattering mechanism

over almost the entire phonon frequency range, which is important for Si from 1.8 x 1013

rad/sec to 6.06 x 1013 rad/sec. The latter is expected at room temperature and above. The

scattering rate due to boundaries is two orders of magnitude smaller then intrinsic

scattering rates for a given slab thickness (bulk material). For a quantum well, the

impurity scattering rate which is proportional to ω4 takes the lead at phonon frequencies

above 2.5 x 1013 rad/sec. The dominant mechanism at low phonon frequencies is the

boundary scattering. The overall scattering rate increases in a quantum well. One

important thing to note is that by improving crystal and surface quality one can reduce

the impurity and boundary scattering rates but not the Umklapp scattering rate. The

increase of the U-process scattering rate in a quantum well is a direct result of the

modification of phonon dispersion due to spatial confinement of the phonon modes. The

later leads to the reduction of the group velocity which also strongly increases the

impurity scattering as it is proportional to 1/vg
3.

IV. Comparison of thermal conductivity of silicon quantum wells and bulk

Fig. 4 presents the lattice thermal conductivity as a function of the temperature for the

quantum well and the bulk material. In order to illustrate the contributions of different

scattering mechanisms to the thermal resistivity, the conductivities limited only by the

Umklapp scattering and by the Umklapp and impurity scattering are also shown. The

Umklapp limited conductivity drops about 3.5 times because of the spatial confinement

of phonons. The overall thermal conductivity of a quantum well at 300 K is about 13% of

the bulk Si. The calculated value of the thermal conductivity and its temperature

dependence are consistent with the results of the experimental investigation recently
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reported by Zheng et al. [5]. The measurements reported in Ref. [5] have been conducted

with a suspended micro-structure which served as a thermal bridge using the differential

and equivalent circuit methods. These measurements have shown that the lateral thermal

conductivity of a Si3N4 (150 nm) / monocrystalline Si (155 nm) / SiO2 (300 nm) structure

was about 1.5% of the conductivity of the bulk Si and was almost a constant in the

temperature range from T=293 K to T=413 K. The total error for the measurements was

estimated to be less than 20 %. Although the model presented here assumed a free-

standing quantum well, the results can be extended to quantum wells with rigid

boundaries. The lowest confined phonon modes in quantum well with clamped-surface

boundary conditions are higher in energy than those in a free-standing quantum well, but

the overall behavior and the decrease of the group velocities are very similar in both

cases. This will be shown in details in section VI. The model presented here can be

developed further to include mixed boundary conditions and interface quality. Applied to

a 155 nm wide Si well, this model gives kph=66.7 W/mK. For comparison, experimentally

measured thermal conductivity of bulk Si is 148 W/m K. This is a significant drop

although much less then that observed in the experiment. The temperature dependence of

the calculated kph is very close to the measured one. The discrepancy in the calculated and

measured values of kph maybe attributed to (i) underestimated in the model boundary

scattering, (ii) presence of other defect scattering processes (like scattering on

dislocations), or (iii) crystal anisotropy, strain effects and related phonon focusing.

The theoretical results presented in this review are in a good agreement with the recent

data reported in Ref. [31]. In Ref. [31], the authors predicted a significant reduction of the

in-plane lattice thermal conductivity for Si layers thinner than 0.2 µm at temperatures as

high as 700 K. In accordance with their model, the thermal conductivity of a 0.05 µm

pure Si film at 400 K in silicon-on-insulator structures is about 30 % of the bulk value.

Further reduction of the layer thickness and inclusion of the phonon confinement effect

would lead to much stronger decrease of the thermal conductivity. It was also reported

there that the lattice thermal conductivity of the Bi0.5Sb1.5Te3 films is considerably lower

than that of bulk crystals of the same solid solution. The experimentally observed
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temperature dependence in Ref. [32] is very close to the one calculated on the basis of

our model.

V. Confined phonon transport in quantum wires

In this section we investigate the phonon transport and the lattices (phonon) thermal

conductivity in a generic cylindrical silicon quantum wire taking into account

modification of the acoustic phonon modes and phonon group velocities in free- and

clamped-surface wires due to spatial confinement effects. At room temperature and

above, acoustic phonons, with the wave vectors close to the Brillouin zone center, carry

most of the heat in silicon bulk material and low-dimensional structures, including

quantum wires. In order to calculate the thermal conductivity of quantum wires we use

the same type of formalism as we used for quantum wells (thin films) in the previous

section but substitute phonon dispersion and group velocity found for quasi-1D

structures. The above equations for thermal conductivity and phonon scattering rates

were initially derived for bulk semiconductors. We extended them to a low-dimensional

structure assuming that a quantum wire has finite radius r>>ao, where ao is the lattice

constant. Phonon confinement effects enter these equations through modification of the

phonon group velocity, which has to be calculated for each particular geometry and

boundary conditions. In the limiting case of strictly one-dimensional (1D) structure the

phonon frequency dependence in the equation for mass-difference scattering changes to

1/τM ~ω2 [20]. We will not consider this case and limit our analysis to the realistic

situation with wire diameter a ~ 20 nm or larger. Since in nature silicon always contains a

mixture of three main isotopes (92% of 28Si, 4.6% of 29Si, 3.1% of 30Si), the isotope

scattering significantly contributes to the thermal resistance of the material. The boundary

scattering in our model is again treated in the Casimir limit. It can be shown that the

effective boundary mean-free-path Λ(ω) for a cylindrical quantum wire of diameter a in

the Casimir limit is given by Lo=a [25]. (For a rectangular quantum wire with a square

cross section with side W, the Casimir limit mean free path is Lo =1.12W). Thus, the
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phonon-boundary scattering rate for a cylindrical quantum wire can also be calculated

using the same formula as for the quantum well (see section II).

In order to evaluate phonon relaxation rates in quantum wires, one should use the actual

dispersion relations and group velocities, υg ≡ υg(ω(q)), for phonons in the free-surface

and clamped-surface quantum wires. The modification of wave vector selection and

frequency conservation rules due to the spatial confinement should also be taken into

account while dealing with the Umklapp processes. The phonon dispersion and phonon

group velocities are found from the elasticity equation. We consider a cylindrical wire of

infinite length in the z direction and with a diameter a (see Fig.5). For simplicity it is

assumed that the material of a wire has an isotropic symmetry and it does not have the

azimuthal dependency. The components of the stress tensor are written as

(8)

We consider longitudinal and shear modes of the confined acoustic phonons because of

their dominant contributions to the lattice heat transport. The analytical expressions for

longitudinal acoustic waves, i.e. for displacements have been given in Ref. [29]. The

displacements ur and uz are expressed through the ordinary Bessel functions J0 and J1,

parameters ql and qt, some constants A and B (to be determined later), and the z-

component wave vector (direction of propagation) q. Parameters ql and qt are related to

the phonon frequency as

(9)
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The longitudinal waves are the coupled modes of the axial and radial modes that have the

wave vectors ql and qt respectively.  For share waves the displacement is given by a very

simple expression

(10)

This phonon mode has only one non-zero component, which is perpendicular to the

direction of wave propagation (z). We will consider the both cases of boundary

conditions: free-surface boundary, and clamped-surface boundary following the

derivation of Khitun et al [17].

The free-surface boundary exactly corresponds to the boundary between an elastic

material and vacuum, but can be used for a “rigid” material embedded within “softer”

material. In this case the normal components of the stress tensor are vanish and the

displacement is unrestricted:  σz,z  = σr,z = 0, at r= ± a/2. The rigidity of the material can

be quantitatively characterized by its characteristic phonon frequency Ω=(4F/M)1/2. Since

Ω(Si) = 40.9 meV and Ω(Ge)=22.9 meV, we can consider silicon wire embedded within

germanium to have near-free surface boundary conditions. The ideal example of the free-

surface silicon wire is the silicon whiskers grown by vapor-liquid-solid phase molecular

beam epitaxy (MBE).  The clamped-surface boundary conditions describe the case of the

quantum wire made out of the “softer” material embedded within perfectly rigid material.

In this case boundary conditions take the form ur = uz = 0, at r= ±  a/2.

Using the approach of Yu et al [29], one can obtain relations between q, ql and qt for

longitudinal wave in the case of free- and clamped-surface boundaries. Resulting

equations have many solutions for ql and qt (at each particular q), which are continuos

single-connected curves "branches". We label them with an additional index n: ql,n  and

qt,n . These solutions will be either real or pure imaginary depending on q and n. In our

case, we are interested in the real part of solutions corresponding to the propagating

phonon modes which carry the heat.
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VI. Phonon dispersion and group velocities in quantum wires

Following Ref. [17], we numerically solving transcendental equations that determine

acoustic phonon modes in quantum wires, and find confined phonon modes for particular

wire material parameters and dimensions. Using calculated parameters ql and qt (real

values only), we plot the dispersion relations (see Fig. 6) for the longitudinal modes for

the free-surface (solid lines) and clamped-surface (dashed lines) boundaries. The

diameter of the silicon quantum wire is again a=20 nm. The plot shows several branches

of the lowest order. As the next step, the group velocity is obtained by the numerical

differentiation. In order to determine the lattice thermal conductivity we have to find

phonon group velocity as a function of phonon frequency. The functional dependence of

the phonon energy and group velocity on the phonon wave vector is important for

calculation of the Umklapp scattering rate. For evaluating the mass-difference scattering

rates and boundary scattering rates, one needs to know the average phonon group velocity

in the quantum wire. This velocity is expected to be different from that of the bulk.

Different modes have different group velocities and the group velocity reaches the bulk

sound velocity only in some specific very short energy intervals. In order to obtain

resulting group velocity we take average group velocity as a function of phonon energy

as follows,

(11)

where υg,n - group velocity of the nth mode, Nn(ω) -  number of oscillators with frequency

ω on the nth mode. The Boltzmann equation was used to find the relation for the density

of oscillators between  nth and (n+1) th modes
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The above equation is an approximation since we have a non-equidistant energy spacing

for different phonon modes. The average group velocity obtained using this averaging

procedure is depicted in Fig. 7 for Si and Ge quantum wires. Beginning with some

phonon energy values the average group velocity coincides with the first mode group

velocity, and then drops. The overall value of the average phonon group velocity is only

about 1/2 of the bulk phonon group velocity (see Fig. 7). In a bulk the phonon group

velocity approximately coincides with the sound velocity for small values of the phonon

wave vector. This is a significant decrease.

After we found the average phonon group velocity over all contributing modes as a

function of the phonon energy, we can obtain the lattice thermal conductivity using the

equation in section I. The relaxation rates due to the different scattering mechanism are

shown in Fig. 8 as functions of phonon frequency. In Fig. 8 we separated the mass-

different scattering to the isotopic scattering, which is always present, and impurity (Ge)

mass-different scattering. In the defect-free intrinsic bulk semiconductor the boundary,

impurity (through mass difference) and resonant phonon scattering vanish. So that the

thermal conductivity of the pure bulk silicon is determined only by the Umklapp and

isotope scattering. The scattering processes become more complicated in the presence of

many impurity atoms.   One can see the strong influence of mass difference scattering on

relaxation time in the presence of impurity with significantly different mass (as Ge with

respect to Si). Beginning from early terahertz frequencies this different mass scattering

became dominant. Resonance scattering mechanism can also lead to a significant

increasing of relaxation time but it influence is localized in the vicinity of resonance

frequency.

VII. Thermal conductivity of silicon quantum wires

In Fig. (9) we show the lattice thermal conductivity of a quantum wire as a function of

temperature. The results are presented for the quantum wires with free- and clamped-

surface boundaries as well as for the bulk material. The lattice thermal conductivity of the
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quantum wires is less than 10% of the bulk silicon value in the temperature range from

T=300K to T=700K. This significant decrease of the thermal conductivity is the result of

the increased isotope, Umklapp, and boundary phonon scattering in a quantum wire. The

latter comes from the modification of phonon dispersion due to spatial confinement. The

change of the phonon modes leads to the reduction of the group velocity and, thus,

increased phonon relaxation. Since the mass-difference scattering rate, which includes

isotope scattering, is inversely proportional υg
3, even small decrease of the phonon group

velocity gives rise to a strong increase in the phonon relaxation.

It is interesting to note that there is very little difference between thermal conductivity of

a free-standing quantum wire (free-surface boundaries) and a quantum wire embedded

within rigid material (clamped-surface boundaries). This means that the effect is always

pronounced provided that (i) there is a well-defined distinct boundary between two

materials of different elastic properties; and (ii) the lateral dimensions of the structure are

small. The elastic properties can be characterized either by the characteristic phonon

frequency (Ω(Si) =40.9 meV) or acoustic impedance K = ρ v, where ρ is the density, and

v is the bulk sound velocity. The small difference in thermal conductivity drop for free-

surface and clamed-surface boundaries can be explained as follows. Although different

boundary conditions lead to the different phonon dispersion modes and different energy

spacing between them, the slop of each dispersion mode, which defines the group

velocity, is very close in both cases and is smaller than that in the bulk.

We also calculated the lattice thermal conductivity of Ge doped silicon quantum wires.

As it was shown above, the lattice thermal conductivity is rather sensitive to the presence

of the impurity atoms (via mass-difference scattering mechanism). It was found that 10%

mole fraction of Ge can decrease silicon bulk thermal conductivity up to 10% of its initial

bulk value. The experimental data point reported in Ref. [33] and our simulation data

points are in good agreement [17]. One should mention that the combination of two

factors, spatial confinement of phonons and presence of impurity atoms, can reduce the

lattice thermal conductivity of a quantum wire up to few percent of the bulk value of its

constituent materials. The decrease of the lattice thermal conductivity of an intrinsic
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quantum wire obtained in our case is much more severe than the one recently reported in

Ref. [34]. The authors in Ref. [34] treated in details the phonon-boundary scattering

examining both diffusive and specular boundary scattering regimes. They found that the

thermal conductivity drops five times (for a wire with 50 nm side) as compared to the

bulk value. The decrease was attributed to the increased phonon-boundary scattering in

the GaAs quantum wire. Although our results are qualitatively similar, we obtained

stronger decrease of the thermal conductivity due to inclusion of phonon confinement

effects. The discrepancy between these two-model descriptions is expected to be

significant for narrow high-quality quantum wires embedded within material of different

elastic properties. Under such conditions, the phonon modes are strongly confined and

cannot be approximated with the regular bulk longitudinal and transverse modes [16].

Our data indicate that the decrease of the thermal conductivity in intrinsic free-standing

quantum wires is larger than that which occurs in free-standing quantum wells of

comparable size. Using the model for thermal conductivity of free-standing quantum well

of Ref. [16], we found that at room temperature the following relation holds

kph(wire)/kph(well) ~ 0.48. This value was obtained for a cylindrical silicon quantum wire

of diameter a=20 nm and a rectangular silicon quantum well of thickness W=20 nm. The

ration of the wire to well thermal conductivity obtained on the basis of our model is close

to the one obtained in Ref. [34] although the model approaches are significantly different.

Decrease of the thermal conductivity revealed in this work and its mechanism are in

qualitative agreement with some recent experimental findings for thin silicon films and

Si/Ge superlattices. Liu et al. [35] have recently reported on the correlation between

acoustic phonon folding in the small-period Si/Ge superlattices and the lattice thermal

conductivity drop. It was found that the thermal conductivity of the superlattice with the

period 33 A is 1.7 W/mK in the in-plane direction and 2.78 W/mK for the cross-plane

direction, respectively. Obtained thermal conductivity was considerably lower than that

determined using the bulk thermal conductivity values for Si, Ge, and SixGe1-x alloys.

This drop in thermal conductivity was attributed to the strong modification of the phonon

modes and corresponding phonon velocities, which led to the phonon folding observed in

Raman spectra [35]. A giant drop of the lattice thermal conductivity (more than an order
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of magnitude) of the thin silicon film embedded within silicon nitride and silicon dioxide

was reported by this group earlier [4]. Recent progress in fabrication of quantum wire

arrays makes us to expect that such structures will soon be available for thermoelectric

applications. One of the examples of such a structure is an array of Bi nanowires prepared

using porous amorphous Al2O3 as a template [36]. The pores in amorphous Al2O3 are

filled with Bi metal using a vacuum evaporation technique [36] or by the high-pressure

liquid injection technique [37]. Another method of preparing quasi-periodic arrays of

short nanowires of different materials using electrochemical deposition was reported in

Ref. [38].

VIII. Thermoelectric figure of merit of quantum wires

Continuous progress in growth and self-assembly techniques for synthesizing quantum

wires (quasi one-dimensional structures) [7] has stimulated a large body of work

pertinent to these systems. Regular electron beam lithography and wet etching allow now

to fabricate quantum wires with widths down to 100 A [9]. Clever techniques employing

MBE growth of a narrow gap semiconductor on V-groove surfaces of a wider gap

semiconductor have yielded quantum wires of unprecedented quality [39]. Carbon

nanotubes are another example of quantum wires. The availability of such systems has

resulted in a commensurately increased interest in their otoelectronic and thermoelectric

properties.

Recently, there have been increasing number of studies on the modification of thermal

conductivity [34] and the enhancement of the thermoelectric figure of merit ZT=S2σT/k

in quantum wires (S is the Seebeck coefficient, σ is the electrical conductivity, T is the

absolute temperature, and k=ke+kl is the sum of electron and lattice contributions to the

thermal conductivity) [40, 41]. A large value of ZT (up to 14 at room temperature) was

predicted for a Bi2Te3 quantum wire with width a=5 A [40]. The figure of merit of a

quantum wire superlattice (a=20 A) was also shown to increase about 2.5 times from its

bulk value of ZT3D=0.53 [41]. In all cases the predicted increase came as a result of
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carrier confinement and corresponding enhancement of the electron density of states near

the Fermi level. The carrier mobility and lattice thermal conductivity were assumed to be

equal to their corresponding bulk values [40-41].

More recently, Casian et al. [42] argued that decrease of the carrier mobility, which is

expected in quantum wires of finite dimensions, may significantly offset the predicted

increase of ZT in quasi one-dimensional structures. A strong drop in the electron (hole)

mobility at room temperature in quantum wires of finite dimensions is explained by

increased electron (hole) scattering on acoustic and optical phonons due to electron (hole)

spatial confinement. Using the relaxation-time approximation, Sanders et al. [43]

predicted decrease of the electron mobility in a Si quantum wire from 120 cm2/Vs to less

than 15 cm2/Vs when the wire width decreases from 23 A to 10 A. This trend can only be

reversed at low enough temperature when the elastic (impurity) scattering is a dominant

scattering mechanism, and restriction of the phase space due to the spatial confinement

leads to the mobility increase. The latter is a well-known Sakaki’s result [44], which does

not apply to the conditions of high-temperature thermoelectric applications of SiGe

structures.

The studies on the thermoelectric figure of merit of quantum wires, reported in Refs. [40-

42], had not included modification of the lattice thermal conductivity in quantum wires

due to spatial confinement of phonons. This simplification is only valid for quantum wire

structures with boundaries made out of material with similar crystalline and elastic

properties such that phonon modes extend through the boundaries and do not differ

significantly from the bulk. The situation is different for the quantum wires, which are

either free-standing or embedded within material with distinctively different elastic

properties (like Bi wires in alumina template). Here, phonon dispersion and group

velocities are changed due to the spatial confinement induced by the boundaries. The

phonon confinement affects all phonon relaxation rates, and makes the thermal transport

properties of quantum wires rather different from those of bulk material in much the same

way as in quantum wells (thin films) .
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As an example system, we consider a Si1-xGex quantum wire structure. The material

system is chosen because of its bulk superior high-temperature thermoelectric properties.

The mole fraction x of Ge is added to additionally decrease the lattice thermal

conductivity, and to facilitate the integration of the quantum wires into a SiGe quantum

wire superlattice. At the same time, the presented model will be applicable for other

materials. Our model will use the derivations of the thermoelectric parameters for one-

dimensional (1D) structures given by Hicks and Dresselhaus [40]. However, we do not

assume that the lattice thermal conductivity kph equals to its bulk value. Rather, we

calculate kph as a function of the wire radius a and temperature T.

Let us consider a quantum wire of circular cross-section that has a radius a and an infinite

length along the x-axis. We assume that the wire has infinite potential barriers and only

one occupied electron subband. The latter assumption is rather realistic for narrow wires

with 1.5 nm < a < 15 nm. The energy spectrum for this wire can be written as  [45]

E k E k
m

X asn x x n
s( ) ( ) ( / ) ,*= +

h2
2

2
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where s is the azimuth quantum number (s=0,±1,±2,...), n is the radial quantum number

(n=1,2,3...), kx is the axial electron wave vector, Xn
s  is the nth zero of the Bessel function

of the first kind, E(kx ) is the electron kinetic energy along with the x direction, and m* is

the electron effective mass.

The general expressions of S, σ, ke for bulk (3D), quantum well (2D), and quantum wire

(1D) were derived using relaxation-time approximation [40,46]. In order to investigate

the influence of the spatial confinement in a quantum wire on the ZT value, it is

convenient to use the ratio between the wire and bulk parameters denoted by indices 1D
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where Fermi-Dirac function Fi is given by
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with η=ζ/κBT  being the reduced chemical potential (relative to the edge of the

conduction band), T is the temperature, kB is the Boltzmann constant, h is the Plank

constant, mx, my, mz  are the components of the effective-mass tensor, and µx is the

mobility in the x direction. The reduced chemical potentials of the bulk and quantum wire

are related as

η η1 3
2

2

2
D D

B
n
s

m k T
X a= −

h
* ( / ) .

(17)

For the fixed values of T and a, the reduced chemical potential depends on the doping

level. The latter is used in order to maximize the ZT value. The ration of electronic

contributions to thermal conductivity ke
1D/ ke

3D  can also be expressed analytically via

Fermi-Dirac functions [40, 46].

As we mentioned in the introduction, the reduction of the carrier mobility in a quantum

wire of finite dimensions is caused by the spatial confinement of carriers. At room

temperature, the dominant electron scattering processes are the longitudinal optical and

acoustic phonon scattering processes [42,43]. In this work we use formulas derived in

Ref. [42] under the assumption that spatial confinement of electrons does not

significantly alter the electron-phonon scattering rates as it was shown by Nishiguchi

[47]. At the same time, spatial confinement of phonons does change their Umklapp and

point defects scattering rates [16], which will be included in the model when calculating

the lattice thermal conductivity. It turns out that in a wide range of the quantum wire radii

(from 10 A to 150 A), the acoustic phonon limited mobility is equal to the optical phonon
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limited mobility. Casian et al [42] and Sanders et al [43] provide an integral equation for

the ratio µ1D/ µ3D expressed via modified Bessel function of the second kind K1, the

exponential integral function E1, and parameter  l=h/mxω0, where ω0  is the limiting

phonon frequency related to the Debye temperature. Another important factor, which was

included in the present model, is the modification of the lattice thermal conductivity due

to the spatial confinement of acoustic phonons [48]. It was shown by Balandin and Wang

[16] that phonon modes within this region are subject to a significant modification in a

quantum well structure, which leads to a strong drop in the lattice thermal conductivity.

Khitun et al [48] have demonstrated that the phonon confinement effect is even stronger

in quantum wires.

As it was already mentioned, SixGe1-x material system was selected for numerical

simulation for its great promise for high temperature thermoelectric applications. We

have also already shown [48] that the lattice thermal conductivity of SixGe1-x a quantum

wire with clamped or free-surface boundaries experiences a huge drop, which makes its

value equal to about 1% of the pure silicon bulk value. This drop is caused by the

decrease of the phonon group velocity and corresponding increase in the phonon

relaxation rates. The mass-difference scattering due to the presence of Ge atoms (mGe=3

mSi) additionally contributes to the thermal conductivity decrease. We have chosen 10 %

Ge content since it deteriorates the lattice thermal conductivity and at the same time does

not dramatically reduce the electron mobility, which is about 50% of its pure Si value at

this concentration. For numerical simulation, we assume that the x direction coincides

with [100], so that m m mx t l= +( ) /2 3, where m ml = 0 9163 0.  and m mt = 01907 0.  are the

bulk longitudinal and transversal effective masses, respectively. For the first zero of

J X0 ( )  we take s=0, and n=1, and X1
0 6= . We also assume that θ = 625K, and vl =

8.47×105 cm/s, vt =5.34×105 cm/s.

In Fig. 10 we depicted the carrier mobility and lattice thermal conductivity normalized to

their bulk values as functions of the wire radius. One can see a significant decrease of

both of these quantities, especially at the wire radii a<40 A.  One should mention here,

that the behavior of the mobility µ and the lattice thermal conductivity kl are not directly
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related. The decrease in µ comes about as a result of the increased electron-phonon

scattering rates due to electron confinement, while the decrease of kl is a result of the

increased phonon relaxation due to phonon spatial confinement [10,11,16]. In principle,

one can design a low-dimensional structure with strong phonon confinement but without

electron confinement and vice versa. The structures where both electrons and phonons

should be considered as spatially confined constitute one of the most interesting material

systems currently being studied for thermoelectric applications [20,21].

As it is seen in Fig.10, ZT increases with decreasing wire radius but starts to saturate at

the wire radius a=20 A. This saturation is caused by the sharp mobility decrease. It is

interesting to note that despite the similar behavior of the ZT curve with the one presented

in Ref. [40], the increase in ZT in our case is mostly due to the decrease of the lattice

thermal conductivity rather than increased electron density of states [40,41]. The overall

improvement of ZT came despite predicted decrease of the carrier mobility [42], which

was included in our model.

IX. Conclusions

We have presented a review of some recent theoretical results on the thermal transport in

low-dimensional structures such as quantum wells and quantum wires. Particular

emphasis in this review has been on modification of acoustic phonon transport due to

quantization of phonon modes and corresponding decrease of the lateral lattice thermal

conductivity. It has been shown that strong modification of the phonon dispersion and

group velocities due to spatial confinement leads to a significant increase of the phonon

relaxation rates in three-phonon Umklapp scattering, impurity scattering, and isotope

scattering processes, and as a result, to the decrease of the lattice thermal conductivity.

The decrease is stronger in quantum wires than in quantum wells of corresponding

dimensions and does not differ significantly for free-surface or clamped surface

boundaries. Predicted decrease of the lattice thermal conductivity is important for further

development of nanostructure-based thermoelectric devices. The decrease may also
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complicate the heat management problem for future deep-submicron silicon-based

devices and circuits. The theoretical results presented in this review favorably agree with

the recent experimental investigation of the lateral thermal conductivity of quantum wells

(thin films). It was shown that modification of the lattice thermal conductivity by

confined phonon modes opens up a novel tuning capability of thermoelectric properties

of heterostructures, and may lead to a strong increase of the thermoelectric figure of merit

in specially designed semiconductor nanostructures.
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FIGURE CAPTIONS

Figure 1. Scheme of the experimental sample (above) and geometry of the quantum well

structure (below).

Figure 2. Dilatational acoustic phonon modes in silicon quantum well (thin film) with

free-surface boundary conditions. The quantum well thickness is 10 nm. The bulk phonon

dispersion is shown by dash line.

Figure 3. Shear acoustic phonon modes in silicon quantum well (thin film) with free-

surface boundary conditions. The quantum well thickness is 10 nm. The bulk phonon

dispersion is shown by dash line.

Figure 4. Lattice thermal conductivity of a free-standing Si quantum well and bulk. The

results are also shown for thermal conductivity limited by three-phonon Umklapp process

only. The quantum well thickness is 15 nm.

Figure 5. Geometry of a quantum wire and notations.

Figure 6. Acoustic phonon dispersion for longitudinal modes in Si wire of D=20 nm. The

results are shown for both free-surface and clamped surface boundaries.

Figure 7. Average phonon group velocity as a function of phonon energy for Si and Ge

quantum wires. The wire radius is 10 nm.

Figure 8. Phonon relaxation rates in quantum wires due to different scattering

mechanisms as functions of phonon frequency at T=300 K.

Figure 9. Lattice thermal conductivity of quantum wires with free-surface and clamped

surface boundaries. Note a significant drop compared to bulk.
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Figure 10. Calculated electrical conductivity, thermal conductivity, Seebeck coefficient

and ZT of SiGe quantum wire as functions of the wire diameter.
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