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It is shown that a finite acoustic mismatch between structure and barrier
materials in low-dimensional structures leads to the acoustic phonon
confinement, which in its turn brings about a corresponding decrease of the
phonon group velocity and modification of the phonon density of states.
These factors contribute to the reduction of the in-plane lattice thermal
conductivity, thus allowing one to increase the thermoelectric figure of merit.
Results of experimental study of confined acoustic phonons in single Si thin
films and Si/Ge superlattices are also reported. High-resolution Raman
spectroscopy of ultra-thin silicon-on-insulator structures reveals multiple
peaks in the spectral range from 50 cm-1 to 160 cm-1. The peak positions are
consistent with the theoretical predictions and indicate the confined nature of
phonon transport in thin films and superlattices with a finite acoustic
mismatch between layers. This opens up a novel tuning capability for
optimization of the thermoelectric properties of low-dimensional structures.

I. INTRODUCTION

We have recently predicted theoretically that confinement of acoustic phonons in
semiconductor structures brings about significant modification to their thermoelectric
properties [1-4]. The predicted increase of the thermoelectric figure of merit in
quantum wells with free-surface boundaries has been a result of a significant drop of
the phonon group velocity due to spatial confinement [3]. The change in phonon
dispersion (phonon mode quantization) leads to a decrease in the group velocity, a
corresponding increase of the phonon relaxation rates and thus, to a strong drop of the
in-plane lattice thermal conductivity. This mechanism is different from phonon wave
interference that requires length scale comparable to the phonon coherence length [5].
It is, in essence, a decrease of the lattice thermal conductivity due to the change in the
acoustic phonon dispersion. The latter can play an important role even at high
temperatures provided that there is a significant acoustic impedance mismatch
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between the material of a low-dimensional structure (quantum well or quantum wire)
and the surrounding barrier material.

An ability to modify the lattice thermal conductivity opens up an additional degree of
freedom for maximizing the thermoelectric figure of merit ZT=S2σ/(K + Ke). Here S is
the Seebeck coefficient, σ is the electric conductivity, K is the lattice thermal
conductivity, and Ke is the electronic thermal conductivity). This modification of the
thermoelectric figure of merit due to the change in K value comes in addition to earlier
predicted increase due to increased phonon-boundary scattering in thin-films [6] and in
quantum wires [7]. The perpendicular thermal transport in Si/Ge superlattices was
also shown to be suppressed at high temperature due to the acoustic mismatch at the
boundaries [8].

The theoretical models developed in Refs. [2-3] have used a simplifying assumption
that the boundaries of low-dimensional structures are either free- or clamped-surface
boundaries. The former corresponds to a free-standing thin film (or thin film
embedded within “soft” material like polymer), the latter corresponds to the thin film
embedded within rigid material. Most of the real experimental situations fall into the
category of intermediate (or mixed) boundary conditions. This allows for a partial
phonon wave function penetration through the boundaries. Quantitatively the
difference in the “rigidity” of materials can be characterized by the acoustic mismatch
between acoustical impedances of the corresponding materials ζ=ρ2V2/ρ1V1, where ρi
is the density of ith material and Vi is its sound velocity. Even similar materials may
have rather large acoustic mismatch ζ. For example, mismatch between Si and Ge
calculated for longitudinal and transverse sound velocities is 0.75 and 0.71,
respectively.  Here I used parameters of Si and Ge summarized in Table I. The
mismatch between two very similar materials such as GaAs and AlxGa1-xAs for a 50%
alloy lies in the region of 0.90. Even this relatively small mismatch has led to a
frequency selective phonon transmission in a superlattice [5]. It is natural to assume
that the acoustic mismatch in many other thermoelectric materials based on low-
dimensional structures will be much larger. This should be particular true for materials
of dissimilar crystalline properties such as array of single-crystal Bi wires imbedded in
alumina template recently suggested for thermoelectric applications [9] or Bi2Te3 thin
films on polymer substrate [10].

Thus, it is important to determine experimentally if the finite acoustic mismatch leads
to quantum confinement of acoustic phonons in low dimensional structures.
Previously, modification of acoustic phonon modes has been extensively studied in
superlattices. Such modification was evident by appearance of the folded phonon
doublets in Raman spectra [11]. In this case, the phonon modes penetrate through
several layers of materials (partially confined), and the doublets originate due to
additional periodicity of the superlattices. The phonon dispersion in superlattices can
be theoretically described by Rytov’s model [12]. Spatial confinement of phonons in



                                                  Balandin, Phys. Low-Dim. Struct. 5/6, 73-91 (2000).

3

Raman spectra of a single thin film has not been experimentally investigated yet [13].
This is primary due to the lack of high quality thin films with sharp interfaces
embedded within material with distinctively different elastic properties. In most of
cases, one deals with quantum wells grown on material with very similar crystalline
structure. Here I present the report of the observation of confined acoustic modes in
single thin silicon film embedded in silicon dioxide.

The rest of the paper is organized as follows. Chapter II presents a simple model for
the lattice thermal conductivity of a quantum well (thin film) that allows one to take
into account the effects of acoustic phonon confinement. In section B of this chapter, I
give an analytical expression for a phonon group velocity of shear modes that
illustrates a decrease of the in-plane phonon velocity due to confinement in
perpendicular (growth) direction. Chapter III presents results of Raman spectroscopy
study of acoustic phonon confinement in single Si films embedded into silicon dioxide
and acoustic phonon folding in Si/Ge superlattices designed for thermoelectric
applications. A discussion and comparison with available thermal conductivity data
follow the spectroscopy data. Conclusions are given in Section IV.

II. THEORY

A. Calculation of the lattice thermal conductivity

A simplified theory that allows one to include affects of phonon confinement can be
presented as follows. The lattice thermal conductivity K at a temperature T is given by
the formula

(1)

where VG is the phonon group velocity, φ is the angle between the group velocity and
the direction of the heat flow, q is the phonon wave vector, τC(q) is the combined
phonon relaxation time, Cph(q) is the specific heat. I assume that in the experiment, the
heat flux is in-plane direction along axis x and VGcosφ=VG,x. The lattice thermal
conductivity in the cross-plane (growth) direction z is beyond the scope of this paper.
For the isotropic elastic medium d3q=4πq2dq and the formula can be rewritten in
Debye approximation as
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(2)
where D(v) is the phonon density of states (PDOS) introduced as
D(v)dv=4πq2dq/(4/3πqD

3), and qD is the cut-off wave vector for acoustic phonons
related to cut-off frequency vD through the phonon group velocity. Using the Debye
temperature kBθ=hvD (kB is the Boltzmann’s constant), the thermal conductivity
reduces to

(3)
where the specific heat is given by

(4)

Although the Debye approximation has been used, the effects of acoustic phonon
confinement enter the lattice thermal conductivity of Eq. (3) via decreased phonon
group velocity, increased phonon relaxation rate and modified PDOS. The exact
PDOS can be calculated numerically using the definition

(5)

where the integral is taken over the area of the surface v=const in q space. The result
refers to a single branch of the dispersion relation and unit volume. If one disregards
PDOS modification and uses Debye expression D(v)=3v2/(vD)3, the thermal
conductivity transforms to the familiar form

(6)

where ξ=hv/kBT. Here the change in the phonon group velocity due to confinement
affects the phonon relaxation rate τC. The phonon group velocity that enters Eq. (6) is
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averaged over all populated modes using the procedure outlined in Ref. [14]. The
combine scattering relaxation time includes all major phonon scattering mechanisms
and is given as

(7)

where τC  is the combined phonon relaxation time due to different scattering
mechanisms which are dominant in silicon at room temperature and above.
Particularly, the mechanisms include Umklapp scattering (τU), mass-difference (or
isotope) scattering (τI), boundary scattering (τB), and phonon-electron scattering (τe). In
order to determine the lattice thermal conductivity, I calculate all phonon relaxation
times in a low-dimensional structure taking into account their modification due to
spatial confinement of phonon modes. Mass-difference scattering arises due to the
presence of atoms with a mass different from the average atomic mass in a
semiconductor. Different masses can come from the isotopes of particular elements or
impurity atoms. In the latter case, the difference in stiffness constants between the
impurity-host atoms and the host-host atoms, as well as the difference in the atomic
volume of the impurity atoms should also be included in the phonon scattering rate
expression. I use the standard formulae for the mass-difference scattering but introduce
the important modifications – group velocity and PDOS dependence on the structure
geometry and boundary conditions. Since the scattering rates strongly depend on
phonon group velocity, e.g. τI ~ VG

3, one should expect significant change in the
thermal conductivity due to the variation of the phonon velocity [1-4].

B. Phonon dispersion in acoustically mismatched low-dimensional structures

In order to evaluate relaxation rates for all the above processes, one should use the
actual dispersion relations and group velocities, vg = vg(ω(q)), for phonons in a
quantum well. The modification of wave vector selection and frequency conservation
rules due to the spatial confinement should also be taken into account [2]. We have
outlined the general procedure of calculating confined acoustic phonon modes in Refs.
[2-3]. Details of numerical calculation of confined modes in quantum wells (thin
films) together with electron – phonon scattering rates are given by Bannov at al. [15]
and Stroscio at al. [16]. It is illustrative though to show the dependence of the in-plane
phonon group velocity on the cross-plane phonon quantization for shear modes in thin
films since it can be done analytically. The phonon dispersion relation for shear modes
is written as
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(8)

where q=qx is the phonon wave vector along in-plane x direction, W is the thin film
(quantum well) thickness, VT is the transverse phonon group velocity in bulk material
(transverse sound velocity). The phonon wave vector along the film growth (cross-
plane) direction qz,n is quantized in order to satisfy free-surface boundary conditions.
The phonon group velocity can be obtained from the above equation, and it is given by

(9)

Thus for the lowest phonon mode (n=1) in a quantum well of thickness W=10a, and a
phonon wave vector close to the Brillouin zone center q= (1/10)qB the group velocity
VG,x ~ 0.71 VT  (a is the lattice constant and qB=π/a is the zone boundary wave vector).
For the second and the third modes the group velocities are VG,x ~ 0.44 VT  and VG,x ~
0.32 VT , respectively. The average over all populated modes gives rather significant
drop in the group velocity.

Substitution of the < VG,x> into the expressions for the phonon relaxation rates [1-3]
leads to a strong increase of  the combined scattering rate (Eq. (7)). One should also
mention that analogous modification of the phonon relaxation is achieved for the
clamped-surface boundary conditions. The important question to ask now is whether
acoustic phonons are indeed confined as predicted by the theory in real low
dimensional structures with sharp interface and finite acoustic mismatch between
structure material and the surrounding material. Phonon folding in superlattices with
small acoustic impedance mismatch (AlGaAs/AlxGa1-xAs) is relatively well-
researched topic [17]. In such structures, the modification of phonon transport comes
from the additional periodicity in the direction of superlattices layering. The phonon
modes extend many periods of the superlattice and are not confined to a single layer.
The phonon folding leads to formation of minizones and gives rise to mini-Umklapp
processes predicted in Ref. [18]. The situation is quit different in single quantum wells
embedded into material with distinctively different elastic properties, which is
characterized by a large acoustic impedance mismatch. Here the phonon modes are
confined (or nearly confined) into a single layer. The phonon dispersion changes due
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to spatial quantization induced by the boundaries. Acoustic phonon confinement in
single thin films or superlattices with large acoustic mismatch has not been
experimentally investigated yet. In the next section I present the results of high-
resolution Raman spectroscopy that shed light on confined nature of phonon transport
in low dimensional structures.

III. EXPERIMENT

A. Sample preparation and measurements

In order to investigate the nature of acoustic phonons in semiconductor thin films I
have chosen to use ultra-thin silicon-on-insulator (SOI) structures. The SOIs have been
specially prepared by wafer-bonding technique (BESOI). The details of the preparation
have been reported in Ref. [19]. The state-of-the-art technology allowed the fabrication
of ultra-thin Si films with thickness W=30 nm, - 90 nm, and very sharp boundaries.
The films were embedded within materials of significantly different elastic and
crystalline properties such as SiO2. Thermal conductivity of SiO2 varies from 0.66
W/mK for BESOI to 1.4 W/mK for bulk fused quartz, as compared to 148 W/mK for
bulk Si. The ultra-thin SOI structures are well suited for study of confined phonon
thermal transport since the heat flux mostly propagates in the in-plane direction, and
the acoustic phonon modes are confined due to nanoscale width.

Small period Si/Ge superlattice structures grown on a p-type Si (100) wafer have also
been examined. A detail description of the structure and preparation procedure have
been reported by Lui et al. [13]. A typical structure consists of a buffer layer, and 150
periods of Si and Ge layers with thickness of 33 Å each. The superlattice has a
uniform heavy n-type doping. The samples were grown using a solid source molecular
beam epitaxy (MBE) system. After a standard chemical cleaning and thermal cleaning
process, the substrate temperature was reduced and kept at 500°C. 1.1µ-thick relaxed
Si1-XGeX graded buffer was then grown on the substrate. Ge concentration x is ranging
from 0 to 1 with a step of 0.1, which means there are 11 layers with each layer
thickness of 100 nm in the buffer. On the top of the buffer, there are 150 periods of 33
Å Si /33 Å Ge superlattice with a uniformly heavy n-type doping.

Raman spectra were measured using a Renishaw Raman 2000 microscope at the room
temperature. All spectra were excited by the 514-nm line of an Ar ion laser in the
back-scattering configuration and recorded by a Si CCD camera. The spectral
resolution of the instrument was about 0.1 cm-1.
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B. Raman spectra of ultra-thin SOI structures

A typical spectrum of SOI structure with 30 nm tick Si layer is shown in Figure 1. In
addition to easily recognizable Si peaks at 522 cm-1 (TO), 970 cm-1 (2TO), 434 cm-1

(LO), and 302 cm-1 (2TA/LA), I have also observed quasi-equidistant peaks in the
low-frequency end of the spectrum, in the range from 50 cm-1 to 160 cm-1. The peaks
below 50 cm-1 have been cut by the Raman spectrometer filter. Vanin et. al. [20]
reported an observation of a set of intense, narrow and equidistant peaks at wave
number of 25, 50 and 75 cm-1 that were attributed to nanocrystalline silicon dioxide. In
order to exclude similar types of local vibrational modes of SiO2 from consideration, I
have carried out Raman spectroscopy of Si substrates with the layers of SiO2. In this
case, no peaks were observed in the specified frequency range from 50 cm-1 to 160 cm-

1. The investigation was performed for different samples to make sure that the
presence or absence of peaks is not related to the finite penetration depth of the
incident laser light. The spectral position of the additional low-frequency peaks
depended on the thickness of the Si layer embedded within layers of SiO2. The latter
can be considered as a strong argument that the peaks are confined silicon acoustic
phonons rather then silicon dioxide peaks.

Figure 2 presents a blow-up of the peaks with the exact wave numbers of the peak
position. In Table II I present experimental values of phonon peaks extracted from the
Raman spectrum of one of the samples, and a theoretical fit based on a calculated
phonon dispersion for share acoustic phonons in Si thin film of given thickness (W=30
nm). Due to spatial confinement effects bulk acoustic phonon branches (LA and TA)
split into many confined (quantized) phonon modes. There are three basic types of the
confined modes: shear (SA); dilatation (DA); and flexural (FA). The theoretical fit
presented in Table II is obtained using SA modes alone. The energies of these modes
have been calculated using the method outlined in Ref. [2-3]. If one includes into
consideration all other possible modes (DA and FA) even closer fit can be obtained for
all expetrimental energy values. A Raman spectrometer probes these modes for the
phonon wave vector q close to the center of the first Brillouin zone center. As one can
see, the calculated values of the peak positions for a 30 nm wide thin film are in good
agreement with the measured ones. It is important to notice, that the theoretical fit was
obtained with the lowest confined phonon modes (n=1-4) that have higher population
probabilities. Thus, one may conclude that the observed additional peaks in the low-
frequency end of Raman spectra from ultra-thin SOI structures are indeed related to
the spatially confined acoustic phonons.

The confined phonon peaks discussed here originate from a single thin film rather than
from a superlattice. They are discribed by different dispersion relation [2] and, in this
sense, they have different origin from that of folded doublets in Raman spectra of
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superlattice structures, which are discribed by Rytov’s model [12]. The fact that
acoustic phonons are at least partially confined in low-dimensional structures with
finite acoustic misfit indicate that the phonon quantization have to be included in the
modeling of phonon transport in such structures. The important consequence from this
is that the effective in-plane phonon group velocity will be lower in the low-
dimensional structure than in the corresponding bulk material [2-3]. The amount of the
velocity decrease, and corresponding increase in phonon relaxation rate, can be
“phonon engineered” by appropriate change of the film thickness and the acoustic
mismatch ζ. of the boundary material.

C. Raman spectra of Si/Ge superlattices

A typical Raman spectrum of the sample A (Si/Ge superlattice with 3.3 nm thick
layers of Si and Ge) is shown in Figure 3. In addition to regular Ge-Ge and Si-Ge
Raman peaks, the spectrum clearly displays a vibrational mode of the doublet structure
with a midfrequency at ∆ω = 129.1 cm-1. This doublet has been attributed to the
longitudinal acoustic folded phonon mode of the order of m=3 (m is the folding index).
It is interesting to note that the second order peak is not present for this superlattice
since it has equal thickness for Si and Ge layers. This follows from the theory of
Raman scattering under assumption of the photoelastic mechanism for light scattering
[11]. The intensity of Raman scattering from folded acoustic phonons is given as

(10)

where PSi and PGe are the photoelastic coefficients in corresponding materials, d1 and
d2 are the thickness of the Si and Ge layers. It can be seen from Eq. (10) that Im=0 for
all even peaks when d1=d2. The lowest folded phonon mode (m=1) is not seen because
it is too close to the laser fundamental peak, and thus it is cut by the filter. The higher
order peaks are overshadowed by Ge-Ge Raman peak. The assignment of acoustic
folded phonon peaks is based on the elastic continuum approximation.

In Figure 4 I present a Raman spectrum of the sample B, which is similar to the sample
A but the Ge layer is substituted with Si0.7Ge0.3 layer. Since the effective group
velocity is higher in this structure, the third order confined peak is shifted toward
higher wave numbers. The folded acoustic phonon peak is seen at 152.2 cm-1. This
peak is broader than the one in Figure 4. This is attributed to the difference in sample
quality, and confirmed by TEM data. The acoustic mismatch for this structure is
obviously smaller that for the sample A. The latter may also affect the sharpness of the
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observed peak.  Knowing the folded peak frequency ωm and folding index m, one can
determine the effective phonon velocity from Rytov’s model Veff=ωmD/(2πm). The
smallest velocity Veff=1.5 x 105 cm/sec, which is much less then expected from the
bulk values, has been obtained for Si/Ge superlattice with 150 periods of 33 Å wide Si
and 33 Å wide Ge layers.  This shows that Si/Ge superlattices specifically designed for
thermoelectric applications have the acoustic impedance mismatch, which is large
enough in order to modify phonon transport in such structures, and introduce folded
phonon mini-zones [11].

IV. NUMERICAL RESULTS AND DISCUSSION

The results of high-resolution Raman spectroscopy indicate the presence of confined
acoustic phonons in single Si quantum wells embedded into acoustically mismatched
material (ultra-thin SOI). The Raman spectra of Si/Ge superlattices, designed for
thermoelectric applications, with acoustic mismatch between Si and Ge layers of about
0.71 have also shown folded acoustic phonons. This means that an accurate
description of phonon transport in such structures and calculating of the lattice thermal
conductivity are to take into account modification of the acoustic phonon modes. A
simple way of including the effects of phonon confinement into consideration has been
outlined in section II.

First, we calculate phonon dispersion in a low-dimensional structure with given
geometry and boundary conditions. Large acoustic impedance mismatch ζ  allows to
approximate the boundaries of the structure with either free-surface or clamped surface
conditions. The in-plane phonon group velocity is then found by numeric
differentiation for each phonon branch separately. The averaging of the group velocity
takes into account the population factor and is carried out using the procedure outlined
in Ref. [14, 21, 22]. Based on averaged values of the phonon group velocity, one
calculates the phonon density of states (PDOS) in the given structure and the
combined phonon relaxation rate. One should note here that in our previous
calculations we did not take into account modification of the PDOS and used Debye
PDOS. As an example, I calculated the phonon density of states for a 15 nm wide Si
quantum well (see Figure 5). The low-energy part of PDOS is similar to Debye density
of states proportional to the square of the phonon energy (frequency). Narrow peaks
around 5 meV that go to infinity are associated with the onset of the second and third
confined acoustic (DA) phonon branches. At the maxima of these peaks the phonon
group velocity is zero. Thus, the weighted contribution of the phonons with these
energies (frequencies) <VG(v)>2D(v) does not go to infinity. The contribution of the
high-energy phonons in the low-dimensional structures is cut due to the modification
of the PDOS as compared to bulk described by Debye density of states. This behavior
of the PDOS is somewhat analogous to the one reported for binary skutterudites [23]
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with the weighted PDOS dominated by the low frequency part of the phonon spectrum
(below 100 cm-1).

The phonon scattering rates have been evaluated for a bulk silicon slab (10 µm thick)
and a silicon quantum well (W=15 nm). The material parameters used in simulation
were the following: the lattice parameter a=5.45 A, density ρ=2.42 x 103 kg/m3, mass
of an atom M=46.6 x 10-27 kg, the number of atoms per unit cell na ~ 7.3, Gruneisen
parameter γ=0.56, θ=625 K, and the isotope factor Γ x 104 = 2.64  for three Si
isotopes. In the case of bulk material, the U-process is a dominant scattering
mechanism over almost the entire relevant phonon frequency range. The latter is
expected at room temperature and above. The scattering rate due to boundaries is two
orders of magnitude smaller then intrinsic scattering rates for a given slab thickness.
For the quantum well, the impurity scattering rate, which is proportional to ω4 is the
dominant process at high phonon frequencies. The dominant mechanism at low
phonon frequencies is the boundary scattering. The overall scattering rate increases in
a quantum well. One important thing to note is that by improving crystal and surface
quality one can reduce the impurity and boundary scattering rates but not the Umklapp
scattering rate. The increase of the U-process scattering rate in a quantum well is a
direct result of the modification of phonon dispersion due to spatial confinement of the
phonon modes [2,3].

Knowing VG,x(v), τC(v), and D(v) we can evaluate the in-plane lattice thermal
conductivity K for the quantum well (thin film embedded into material with large
acoustic mismatch) using Eq. (3). If Debye PDOS is used like in our earlier model [2],
one can calculate K from Eq. (6).  Figure 6 shows the calculated in-plane lattice
thermal conductivity as a function of the absolute temperature. For comparison the
results are presented for a bulk slab and the 15 nm quantum well (thin film) with
clamped surface boundaries. Two curves for each case correspond to calculations
carried out for thermal conductivity limited by the three-phonon Umklapp scattering
only, and by all resistive scattering processes combined. Note a strong decrease of the
lattice thermal conductivity due to acoustic phonon confinement in low-dimensional
structures with finite acoustic mismatch.

The conclusion about significant decrease of the in-plane lattice thermal conductivity
in low-dimensional structures with finite acoustic mismatch agrees well with available
experimental data. Borca-Tasciuc et al. [24] reported measurements of the thermal
conductivity for similar Si/Ge superlattice structures described in section II. The
measurements have been carried out using the 2 wire-3ω method. The measured
thermal conductivity of the superlattice of the sample with the period of about 3 nm
was 1.7 W/mK in the in-plane direction and 2.78 W/mK in the cross-plane direction
[24, 13]. Obtained thermal conductivities were considerably lower than those
determined using the bulk thermal conductivities for Si, Ge, and SixGe1-x alloys. The
strongest drop in thermal conductivity corresponded to the lowest phonon group
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velocity extracted from the Raman data [13]. The latter could be attributed to the
modification of the phonon modes, which manifests itself as phonon folding in the
Raman spectra. At the same time, it is still too early to make final conclusions about
the strength of the correlation of the phonon mode modification in the acoustically
mismatched low-dimensional structures with the drop in the lattice thermal
conductivity. This is due to the difficulties in measurements and accurate experimental
separation of the in-plane and cross-plane thermal conductivity of ultra-thin films.

The confinement of phonon modes strongly increases phonon relaxation (via scattering
on isotopes, impurities, and anharmonic interactions) but does not significantly
increase phonon-electron scattering rates [4]. Due to this reason, one can realize
“electron transmitting – phonon blocking” transport regime, which leads to ZT
increase. The results of this investigation show that by changing thickness of
semiconductor layers and their acoustic mismatch with the boundaries, we can
optimize the thermoelectric properties of low-dimensional structures via phonon
engineering.

IV. CONCLUSIONS

It has been shown that strong modification of the phonon dispersion and group
velocities in the acoustically mismatched low-dimensional structures leads to a
significant increase of the phonon relaxation rates and change of the phonon density of
states. As a result of this modification, one can observe a decrease of the in-plane
lattice thermal conductivity. A theoretically predicted modification of the acoustic
phonon transport has been experimentally confirmed using high-resolution Raman
spectroscopy of ultra-thin silicon-on-insulator (SOI) structures and Si/Ge superlattices
with small periods. The obtained experimental data indicate multiple confined acoustic
phonon peaks in Raman spectra of the SOI structure with the thin film thickness of 30
nm.  The Raman spectra of the Si/Ge superlattices manifest folded acoustic phonon
doublets that indicate confined nature of phonon transport in such structures.
Engineering of phonon modes via selective spatial confinement in acoustically
mismatched low-dimensional structures opens up an additional tuning capability for
optimizing of the thermoelectric properties of semiconductor structures.
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FIGURE CAPTIONS

Figure 1. Raman spectrum of the ultra-thin BESOI structure. The thickness of the silicon layer is W=30
nm. Additional peaks in the range from 50 cm-1 to 140 cm-1 have been attributed to the confined acoustic
phonons.

Figure 2. Low-frequency tail of the Raman spectrum of the ultra-thin BESOI structure. The thickness of the
silicon layer is W=30 nm. The exact position of the confined acoustic phonon peaks is indcated. The peaks
below 50 cm-1 are cut by the Raman spectrometer filter. The peak position changes with the thickness of
the Si layer.

Figure 3. Raman spectrum of Si/Ge superlattice designed for thermoelectric applications.  A third order
folded peak from the longitudinal acoustic phonon is clearly seen at 129.1 cm-1. Note the doublet structure
of the peak which is clearly seen for this sample. The acoustic impedance mismatch between Si and Ge is
about 0.71.

Figure 4. Raman spectrum of Si/SiGe superlattice. A folded peak from the longitudinal acoustic phonon is
seen at 152.2 cm-1.

Figure 5. Phonon density of states (PDOS) calculated for a 15 nm wide Si quantum well. The low-energy
part of PDOS is similar to Debye density of states proportional to the square of the phonon energy
(frequency). Narrow peaks around 5 meV that go to infinity are associated with the onset of the second and
third confined acoustic (DA) phonon branches. At the maxima of these peaks the phonon group velocity is
zero. Note that the contribution of the high-energy phonons in the low-dimensional structures is cut due to
the modification of the PDOS as compared to bulk described by Debye density of states.

Figure 6. Calculated in-plane lattice thermal conductivity as a function of the absolute temperature. For
comparison the results are presented for a bulk slab and a 15 nm thin film (clamped surface boundaries).
Two curves for each case correspond to calculations carried out for thermal conductivity limited by the
three-phonon Umklapp scattering only, and by all resistive scattering processes combined. Note a strong
decrease of the lattice thermal conductivity due to acoustic phonon confinement in low-dimensional
structures with finite acoustic mismatch.
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Silicon (Si) Germanium (Ge) Si/Ge Mismatch ζ
ρ (kg/m3) 2330 5323 -
VL (m/s) 8433 4914 0.75
VT (m/s) 5845 3542 0.71

Table I. Material parameters of Si and Ge

Eexp (1/cm) 58.1 73.4 93.7 117.4 141.1
Eexp (meV) 7.2 9.1 11.62 14.56 17.48
Eth (meV) 7.2 10.8 - 14.4 18.0
m 2 3 - 4 5

Table II. Theoretical fit of the observed peaks with share phonon modes
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