
PHYSICAL REVIEW B 85, 205439 (2012)

Suppression of phonon heat conduction in cross-section-modulated nanowires

D. L. Nika,* A. I. Cocemasov, and C. I. Isacova
E. Pokatilov Laboratory of Physics and Engineering of Nanomaterials, Department of Physics, Moldova State University,

Chisinau, MD-2009, Republic of Moldova

A. A. Balandin
Nano-Device Laboratory, Department of Electrical Engineering and Materials Science and Engineering Program,

University of California-Riverside, Riverside, California 92521, USA

V. M. Fomin and O. G. Schmidt
Institute for Integrative Nanosciences, IFW-Dresden, Dresden D-01069, Germany

(Received 8 February 2012; published 22 May 2012)

We have theoretically demonstrated that phonon heat flux can be significantly suppressed in Si and Si/SiO2

nanowires with the periodically modulated cross-section area—referred to as the cross-section-modulated
nanowires—in comparison with the generic uniform cross-section nanowires. The phonon energy spectra
were obtained using the five-parameter Born–von Karman-type model and the face-centered-cubic cell
model for description of the lattice dynamics. The thermal flux and thermal conductivity in Si and Si/SiO2

cross-section-modulated nanowires were calculated from the Boltzmann transport equation within the relaxation
time approximation. Redistribution of the phonon energy spectra in the cross-section-modulated nanowires
leads to a strong decrease of the average phonon group velocities and a corresponding suppression of the
phonon thermal flux in these nanowires as compared to the generic nanowires. This effect is explained by the
exclusion of the phonon modes trapped in cross-section-modulated nanowires segments from the heat flow. As
a result, a three- to sevenfold drop of the phonon heat flux in the 50- to 400-K temperature range is predicted
for Si and Si/SiO2 cross-section-modulated nanowires under consideration. The obtained results indicate that
cross-section-modulated nanowires are promising candidates for thermoelectric applications.
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I. INTRODUCTION

Heat transfer processes at nanoscale continue to attract
significant attention.1–7 Nanostructured materials with the high
lattice thermal conductivity can be used as heat spreaders
and interconnects7–10 for enhanced heat removal from the
nanoscale circuits. Materials with the low lattice thermal
conductivity and high electrical conductivity are promising for
thermoelectric applications since the measure of the efficiency
of the thermoelectric energy conversion—figure of merit
ZT —contains the electrical conductivity in the numerator
and the lattice thermal conductivity in the denominator:
ZT = S2σT/(κph + κel), where S is the Seebeck coefficient,
σ is the electrical conductivity, T is the absolute temperature,
and κph and κel are the phonon, i.e., lattice and electron
thermal conductivities, respectively. Acoustic phonons make
the dominant contribution to the lattice heat conduction owing
to their high group velocity and lower energy, resulting in the
higher population factors.

Spatial confinement of acoustic phonons in nanostruc-
tures substantially changes their energy spectra and density
of states in comparison with bulk materials, leading to a
reduction of the phonon group velocities.11–17 Modification
of the phonon properties and enhancement of the phonon—
boundary scattering stipulate lower values of the lattice
thermal conductivity in nanostructures as compared with
their bulk counterparts.11–14,16 It has been demonstrated both
experimentally and theoretically that the room-temperature
(RT) lattice thermal conductivity in freestanding Si nanolayers,
Si nanowires (NWs), planar Si/Ge superlattices, and Si/Ge

quantum dot superlattices is two orders of magnitude lower
than the corresponding bulk value of Si.6,18–23

In spite of the fact that bulk Si is a poor thermoelectric
with RT ZT ∼0.01,24 thin Si NWs and Si/Ge segmented NWs
are considered promising for thermoelectric applications6,25–28

owing to the much lower values of the RT lattice thermal
conductivity κph < 1 W m−1 K−1. It has been demonstrated
experimentally that the good electrical conductivity, as in
doped bulk Si, and poor thermal conductivity of Si NWs25

and rough Si NWs26 provide relatively high values of ZT ∼0.3
to 0.6 at RT. These experimental results stimulate theoretical
search of one-dimensional Si-based nanostructured materials
with the ultralow thermal conductivity. An up to 30-fold drop
of the RT lattice thermal conductivity in comparison with Si
NWs was reported for Si-based segmented NWs consisting
of acoustically mismatched materials.6 The reduction of the
RT lattice thermal conductivity up to 75% was theoretically
demonstrated in Si/Ge core-shell NWs with Ge thicknesses of
several monoatomic layers.29 The corresponding enhancement
of ZT in these NWs was also predicted.30

In this paper, we show that a three- to sevenfold reduction
of the lattice thermal conductivity can be achieved in the
periodically cross-section-modulated Si and Si/SiO2 NWs
(MNWs) due to a strong redistribution of their phonon energy
spectra in comparison with generic Si NWs. The phonon
energy spectra in the MNWs and NWs under analysis were
calculated using both the five-parameter Born–von Karman-
(BvK-) type model31–33 and the face-centered-cubic (fcc)6 cell
model of lattice dynamics. In the framework of our theoretical
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approach, we demonstrate that the periodic cross-section
modulation of Si NWs leads to more significant reduction
of the lattice thermal conductivity than previously reported.
The reduction is achieved in a wide temperature range from
50 to 400 K in the diffusive phonon transport regime.

Fabrication of the periodically cross-section-modulated
NWs is still a major challenge. It is difficult to precisely
control the shape and size of the nanowire segments. Never-
theless, various cross-section-modulated semiconductor NWs
have already been fabricated using electrodeposition in the
pores of anodic alumina membranes,34 thermal evaporation,35

metalorganic chemical vapor deposition,36 and chemical vapor
deposition.37 The periodic diameter-modulated GeSi/Si pillar
structures were prepared from the multilayer GeSi/Si islands
using the selective etching of Si in KOH.38 The theoretical
models for the cross-section-modulated NWs have also been
reported. The electron band structure in the size-modulated
hydrogen-saturated Si NWs was calculated within the density-
functional theory in Ref. 39. Ballistic thermal conductance
of Si and Si/Pb wires with modulation of the cross-sectional
width from 0.1 to 0.5 μm was considered in Ref. 40. Within the
framework of the elasticity theory, thermal conductance was
demonstrated to yield a minimum with a reduction by a factor
0.6 to 0.7 at T ∼0.1 to 0.3 K.40 NWs of GaAs modulated by
several quantum dots reveal the enhanced thermoelectric prop-
erties at low temperatures in the ballistic transport regime due
to modification of the electron transmission coefficients41,42

and reduction of the low-temperature thermal conductance.43

The rest of the paper is organized as follows. In Sec. II we
describe our theoretical approach for calculations of phonon
energy spectra and thermal conductivity in generic and cross-
section-modulated NWs. Results and discussions are presented
in Sec. III. We give our conclusions in Sec. IV.

II. THEORETICAL MODEL

Numerous theoretical investigations of phonon properties
of semiconductor nanostructures were carried out in the
framework of a continuum approach. This approach is a
powerful tool for the analysis of the long-wavelength phonon
modes. It is completely adequate for the description of the
electron-phonon interaction44–46 or low-temperature thermal
conductivity in nanostructures when only the low-frequency
long-wavelength phonon modes are populated.43,47 However,
the continuum approach significantly overestimates thermal
conductivity for temperatures T > 100 K in comparison with
the fcc model of the lattice vibrations due to a steep slope
of the dispersion curves for high-frequency phonon modes.48

Different models of lattice dynamics and molecular dynamics
simulations4,5,48–53 allow for an accurate description of heat
transfer and thermal conductivity in a good agreement with
experiments.

We investigate the phonon and heat-conduction properties
of the periodically cross-section-modulated rectangular Si
NWs in the framework of the five-parameter BvK-type
model of lattice dynamics and compare them with those of
generic rectangular Si NWs. The schematics of the considered
rectangular NW and MNW are shown in Fig. 1. The external
surfaces of the nanostructures under consideration are assumed
to be free.6,13,15 The X and Y axes of the Cartesian coordinate
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FIG. 1. (Color online) Schematic view of a rectangular nanowire
(a), a rectangular cross-section-modulated nanowire (b), and a
diamond-type crystal lattice (c).

system are located in the cross-sectional plane of the NWs
(generic or modulated) and are parallel to its sides, while the
Z axis is directed along the structure axis [see Figs. 1(a) and
1(b)]. We assume that NW and MNW are infinite along the
Z axis. The origin of the coordinates is set at the center of
the nanowire cross section. The translation period of MNW
consists of two parts with dimensions dx,1 × dy,1 × l1 and
dx,2 × dy,2 × l2, respectively. The length period of MNW is
L = l1 + l2. The sides of NW are denoted as dx and dy .

The crystal lattice of Si consists of two fcc sublattices,
which are shifted along the main diagonal of a unit cell by 1/4
of its length. For convenience, we identify the atoms of the first
sublattice as the “dark” atoms, while we identify the atoms
of the second sublattice as the “white” atoms [see Fig. 1(c)].
In nanostructures under consideration, the displacements of
the atoms belonging to one period only are independent. The
rest of the atomic displacements are equivalent to those in
the selected period due to the translational symmetry along
the Z axis. In the case of a generic NW, the translation
period consists of two atomic layers of the “dark” atoms
and two atomic layers of the “white” atoms (all layers are
perpendicular to the Z axis). For MNW, the number of atomic
layers in the period is determined by L. The displacements of
equivalent atoms have the form

�u(x,y,z + n · L; qz) = �w(x,y,z; qz)eiqz(nL), (1)
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where �w(x,y,z; qz) ≡ �w(�r; qz) is the displacement of the
atom with coordinates x, y, and z, the period is labeled by an
integer n, and qz is the phonon wave number. The equations
of motion for the displacement are

ω2wi(�rk; qz) =
∑

j=x,y,z;�r ′
k

Dij (�rk,�r ′
k)wj (�r ′

k; qz),

k = 1, . . . ,N, i = x,y,z, (2)

where

Dij (�rk,�r ′
k) = �ij (�rk,�r ′

k)/
√

m(�rk)m(�r ′
k). (3)

In Eqs. (2) and (3), Dij is the dynamic matrix coefficient,
m(�rk) [m(�r ′

k)] is the mass of the atom at �rk [�r ′
k], �ij (�rk,�r ′

k)
is the matrix of force constants, and N is the number of
atoms in the NW or MNW translational period. For the
atom at �rk , the summation in Eq. (2) is performed over
all the nearest and second-nearest atoms at �r ′

k . In the case
of silicon, the atom at �rk has four nearest neighbors at
�r ′
k,n = �rk + �hI

n (n = 1, . . . ,4) and 12 second-nearest neighbors

at �r ′
k,n = �rk + �hII

n (n = 1, . . . ,12). The components of vectors
�hI

n and �hII
n are presented in Table I. In our model, the

interaction of an atom with its nearest and second-nearest
neighbors is described by the following force constant
matrices: �I

ij = (16/a2)(αδij + β(1 − δij ))hI
n,ih

I
n,j for the

nearest atoms (n = 1, . . . ,4) and �II
ij = (4/a2)(λδij (a2/4 −

hII
n,ih

II
n,i) + μδijh

II
n,ih

II
n,i + ν(1 − δij )hII

n,ih
II
n,j ) for the second-

nearest atoms (n = 1, . . . , 12), where a is the lattice constant,
α, β, μ,λ, and ν are the force constants, δij is the Kronecker
delta and i,j = x,y,z. The force constant matrix �ij (�rk,�r ′

k = �rk)
is obtained from the condition that the total force acting on
the atom �rk at the equilibrium position is equal to 0, i.e.,
�ij (�rk,�r ′

k = �rk) + ∑
�r ′
k
�ij (�rk,�r ′

k �= �rk) = 0.

By solving the equations of motion [Eq. (2)] at � and X

Brillouin zone points of bulk Si, we expressed three constants
α,μ, and λ of our model through β and the frequencies of the
longitudinal optic (LO) and transverse optic (TO) phonons at

� point and the longitudinal acoustic (LA) phonon at X point:

α = mω2
LO(�)/8,

μ = m
(
2ω2

LA(X) − ω2
LO(�)

)
/32, (4)

λ = m
(
4ω2

TO(X) − 2ω2
LA(X) − ω2

LO(�)
)
/32 − β/2.

The constants β and ν were treated as fitting parameters
and were obtained from the best fit to experimental dispersion
curves for bulk Si.54 The numerical values of the force
constants for Si are indicated in the last column of Table I.

For calculation of the phonon heat flux per unit temperature
gradient in the NWs and the MNWs, we use the following
expression, which was derived from the Boltzmann transport
equation within the relaxation time approximation,4,16,48,49

taking into account one-dimensional density of phonon states:6

� = 1

2πkBT 2

∑
s=1,...,3N

∫ qz, max

0
(h̄ωs(qz)υz,s(qz))

2

× τtot,s(qz)
exp

(
h̄ωs (qz)

kBT

)
(
exp

(
h̄ωs (qz)

kBT

) − 1
)2 dqz. (5)

Here τtot,s is the total phonon relaxation time, s is the num-
ber of a phonon branch, kB is the Boltzmann constant, h̄ is the
Planck constant, T is the absolute temperature, qz,max = π/L

for MNWs and qz,max = π/a for NWs (in the case of NWs,
L = a). In our calculations, we take into account all basic
mechanisms of phonon scattering: three-phonon umklapp
scattering, boundary and impurity scatterings.6,11,16,48–53 Ac-
cording to the Matthiessen’s rule, the total phonon relaxation
time is given by: 1/τtot,s(qz) = 1/τU,s(qz) + 1/τimp,s(qz) +
1/τB,s(qz). Here, (i) τU,s is the relaxation time for the umklapp
scattering: 1

τU,s (qz) = B(ωs(qz))
2T exp (−C/T );16 (ii) τimp,s is

the relaxation time for the impurity scattering 1
τimp,s (qz) =

A(ωs(qz));4,6,16 and (iii) τB,s is the relaxation time for the
boundary scattering:

1

τB,s(qz)
= 1 − p

1 + p

|υz,s(qz)|
2

(
1

dx

+ 1

dy

)
, (6)

TABLE I. Components of the nearest and second-nearest atoms �r ′
k,n = �rk + �hI (II )

n in the diamond-type
unit cell and a set of the force constants used for Si.

Components of Components of Components of Set of five force
vectors �hI

n for the vectors �hI
n for the vectors �hII

n for the constants of silicon
selected “white” selected “dark” selected “white” (or used for calculation
atom �rk atom �rk “dark”) atom �rk (N/m)

a/4(1,1,1) a/4( − 1, − 1, − 1) a/2(1,1,0) α = 54.85
a/4(1, − 1, − 1) a/4( − 1,1,1) a/2( − 1, − 1,0) β = 35.0
a/4( − 1,1 − 1) a/4(1, − 1,1) a/2(1,0,1) μ = 3.8
a/4( − 1, − 1,1) a/4(1,1, − 1) a/2( − 1,0, − 1) ν = 2.5

a/2(0,1,1) λ = − 4.42
a/2(0, − 1, − 1)
a/2( − 1,1,0)
a/2(1, − 1,0)
a/2( − 1,0,1)
a/2(1,0, − 1)
a/2(0, − 1,1)
a/2(0,1, − 1)
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in the case of a NW, and

1

τB,s(qz)
= 1 − p

1 + p

|υz,s(qz)|
2

((
1

dx,1
+ 1

dy,1

)∫ dx,1/2

−dx,1/2

∫ dy,1/2

−dy,1/2

∫ l1

0
| �ws(x,y,z; qz)|2 dxdydz

+
(

1

dx,2
+ 1

dy,2

)∫ dx,2/2

−dx,2/2

∫ dy,2/2

−dy,2/2

∫ l1+l2

l1+a/4
| �ws(x,y,z; qz)|2 dxdydz

)
, (7)

in the case of a MNW. In Eqs. (6) and (7), υz,s(qz) =
dωs(qz)/dqz is the phonon group velocity along the nanowire
axis, and p is the specularity parameter of the boundary
scattering. Equations (6) and (7) provide an extension of the
standard formula for the rough edge scattering55 to the case of
a rectangular NW or MNW. In Eq. (7) we take into account
that a part of the phonon wave corresponding to the mode
(s,qz), concentrated in the MNW segment dx,1 × dy,1 × l1,
scatters on the boundaries of this segment, while the rest of this
wave scatters on the boundaries of the segment dx,2 × dy,2 ×
l2. Parameters A, B, and C were fitted from a comparison
of the thermal conductivity calculated for bulk silicon with
experimental data.56 In the present work, we obtained the
following values for these parameters: A = 1.32 × 10−9 s3,
B = 1.88 × 10−19 s/K, and C = 137.39 K.

III. RESULTS AND DISCUSSION

To calculate the energy spectra of phonons in Si NWs and
MNWs, we numerically solve the set of Eqs. (2) by taking
into account the periodic boundary conditions [see Eq. (1)]
along the Z axis and free-surface boundary conditions in the

XY plane (i.e., all force constants outside the nanostructure
are set to zero). We perform calculations for all qz values in
the interval (0, π/L) for MNWs and (0, π/a) for NWs. The
notations and dimensions in the monoatomic layers (ML; 1
ML = a/4) for Si NWs and MNWs analyzed in the present
work are represented in Table II.

The phonon energy spectra of Si NW 1 and Si MNW
1 are shown in Figs. 2(a) and 2(b), correspondingly. In the
figure, we show 20 lowest branches h̄ωs(qz) (s = 1,2, . . . ,20)
in both structures as well as several higher branches with
s = 20,25,30,35, . . . , 285,290,294 for the NW and with
s = 35,50,65,80, . . . ,1515,1530 for the MNW. The nanowire
cross section is chosen the same as the cross section of
narrow segments of the MNW (see Table II). The volume
of a translational period in the MNW is larger than that in the
NW; therefore, the number of quantized phonon branches in
the MNW is substantially larger as compared to the NW. In the
MNW, there are 1530 branches, while only 294 branches exist
in the NW (see Fig. 2). As follows from Fig. 2, a great number
of phonon modes in the MNW with energy h̄ω > 5 meV are
dispersionless and possess group velocities close to zero due
to the trapping into the MNW segments. The trapping effect
is illustrated in Fig. 3: the average squared displacements of

TABLE II. Notations and dimensions for Si NWs and cross-section-modulated NWs under consideration.

Nanostructure Dimensions Notation in the present work

Si NW 14 × 14 ML NW 1
Si MNW 14 × 14 × 6 ML/22 × 22 × 6 ML MNW 1
Si MNW 14 × 14 × 8 ML/18 × 18 × 8 ML MNW 2
Si MNW 14 × 14 × 8 ML/22 × 22 × 8 ML MNW 3
Si MNW 14 × 14 × 8 ML/26 × 26 × 8 ML MNW 4
Si MNW 14 × 14 × 8 ML/30 × 30 × 8 ML MNW 5
Si MNW 14 × 14 × 8 ML/34 × 34 × 8 ML MNW 6
Si MNW 14 × 14 ML × Nz/22 × 22 ML × Nz MNW 7
Si MNW 14 × 14 × 4 ML/22 × 22 × 4 ML MNW 8
Si MNW 14 × 14 × 4 ML/22 × 22 × 12 ML MNW 9
Si/SiO2 MNW Si(14 × 14 × 12 ML)/SiO2(18 × 18 × 12 ML) MNW 10

Si(14 × 14 × 12 ML)/SiO2(22 × 22 × 12 ML)
Si/SiO2 MNW Si(30 × 30 × 12 ML)/SiO2(38 × 38 × 12 ML) MNW 11

Si(30 × 30 × 12 ML)/SiO2(46 × 46 × 12 ML)
Si/SiO2 MNW Si(30 × 30 × 12 ML)/SiO2(34 × 34 × 12 ML) MNW 12

Si(30 × 30 × 12 ML)/SiO2(38 × 38 × 12 ML)
Si/SiO2 MNW Si(14 × 14 × 12 ML) MNW 13

Si(14 × 14 × 12 ML)/SiO2(18 × 18 × 12 ML)
Si/SiO2 MNW Si(14 × 14 × 12 ML) MNW 14

Si(14 × 14 × 12 ML)/SiO2(26 × 26 × 12 ML)
Si/SiO2 MNW Si(30 × 30 × 12 ML) MNW 15

Si(30 × 30 × 12 ML)/SiO2(38 × 38 × 12 ML)
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atoms [see Fig. 3(a)]

|U (z; s,qz)|2 =
⎧⎨
⎩

∫ dx,1/2
−dx,1/2

∫ dy,1/2
−dy,1/2 | �ws(x,y,z; qz)|2 dxdy, if 0 � z � l1∫ dx,2/2

−dx,2/2

∫ dy,2/2
−dy,2/2 | �ws(x,y,z; qz)|2 dxdy, if l1 < z � l2

(8)

in the mode [s = 8, qz = 0.4qz,max; red (medium gray)] line are
relatively large in the wide segments of the MNW and almost
vanishing in the narrow segments. Therefore, this mode is
trapped into the wide segments of the MNW. For comparison,
we also show the average squared displacements of atoms in
a propagating phonon mode [s = 992, qz = 0.2qz,max; blue
(light gray)] line , which are equally large in both the wide and
narrow MNW segments. For illustration of the phonon mode
distribution in the cross section of MNWs in Fig. 3(b), we show
the integral squared displacements of atoms in 14 × 14 ML
cross-section channel as a function of the phonon energy:

U 2
core =

∫ dx,1/2

−dx,1/2

∫ dy,1/2

−dy,1/2

∫ l1+l2

0
| �ws(x,y,z; qz(ω))|2dxdydz.

(9)
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FIG. 2. (Color online) Phonon energies as a function of the
phonon wave vector q (a) in Si NW with the lateral cross section
14 × 14 ML (the phonon branches with s = 1 to 20, 25, 30, 35. . .290,
294 are shown) and (b) in Si MNW with dimensions 14 × 14 × 6
ML/22 × 22 × 6 ML. The phonon branches with s = 1 to 20, 35,
50, 65, . . . , 1515, 1530 are depicted.

The results are presented for NW 1 (dashed black line)
and MNW 2 (red dots), MNW 4 (green stars), and MNW 6
(blue triangles). In Si NW U 2

core = 1 for all energies due to the
orthonormalization of the phonon displacement vectors [see
dashed black line in Fig. 3(b)]. Increase of the cross section of
the wide segments leads to the decrease of U 2

core for all phonon
energies and, correspondingly, the rise of (1 − U 2

core). The
latter is indicative of the phonon mode localization in the wide
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FIG. 3. (Color online) (a) Average squared displacements
|U (z; s,qz)|2 of the trapped [s = 8, qz = 0.4qz,max; red (medium
gray) line] and propagating [s = 992, qz = 0.2qz,max; blue (light
gray) line] phonon modes in Si MNW with dimensions 14 ×
14 × 8 ML/22 × 22 × 8 ML. (b) Localization of phonon modes
in 14 × 14 ML MNW core shown for MNWs 2, 4, and 6.
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FIG. 4. (Color online) Average phonon group velocity as a
function of the phonon energy in Si NW with the lateral cross section
14 × 14 ML and Si MNW with dimensions 14 × 14 × 6 ML/22 ×
22 × 6 ML.

segments. Thus, the trapping effect enhances with increasing
cross section of the wide segments.

The effect of the phonon deceleration in cross-section-
modulated NWs is illustrated in Fig. 4, where we show
the average phonon group velocity 〈v〉 (ω) = g(ω)/∑

s(ω) (dωs/dqz)−1 as a function of the phonon energy
for Si NW 1 (dashed line) and Si MNW 1 (solid line). Here
summation is performed over all phonon modes s(ω) with the
frequency ω; g(ω) is the number of the phonon modes. The
average phonon group velocity in MNW is smaller than that in
the NW for all phonon energies. As a result, the phonon modes
in MNW carry less heat than those in the NW. The drop in the
phonon group velocities in MNWs in comparison with NWs
is explained by the trapping effect: the trapped phonon modes
represent standing waves existing only in the wide segments
of MNWs. These modes do not penetrate into narrow MNW
segments [see the red (medium gray) line in Fig. 3(a)].
Therefore, these phonons possess group velocities close to
zero. For example, group velocities of the phonon modes
shown in Fig. 3(a) are υz,s=992(qz = 0.2 · qz, max) ∼ 1.5 km/s
and υz,s=8(qz = 0.4 · qz, max) ∼ 0.01 km/s for the propagating
and trapped modes, respectively. A similar strong reduction
of the phonon group velocity has been recently demonstrated
in the segmented NWs, consisting from the acoustically
mismatched materials.6 The effect was also explicated by the
phonon modes trapping in the NW segments.

In Fig. 5, the lattice thermal conductivity κNW
ph = �/(dxdy)

and κMNW
ph = �(l1 + l2)/(dx,1dy,1l1 + dx,2dy,2l2) are plotted as

a function of temperature for Si NW 1, as well as for Si MNWs
2–5. The results are presented for a reasonable specularity
parameter p = 0.85, which was found in Ref. 53 from a
comparison between theoretical and experimental data for a
Si film of 20-nm thickness. A significant redistribution of the
phonon energy spectra and a reduction of the average group
velocities in MNWs strongly decrease their lattice thermal
conductivity in comparison with the NW. At RT, the ratio
between the thermal conductivities in NW and MNWs ranges
from a factor of 5 to 13, depending on S2 = dx,2 × dy,2.

However, this result does not mean that the ratio of the thermal
fluxes in NW and MNWs should be the same since the average
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FIG. 5. (Color online) Temperature dependence of the lattice
thermal conductivity in Si NW with the cross section 14 × 14 ML
and Si MNWs 2–5.

cross section of MNWs is larger than that in NW. To compare
the abilities of MNWs and NWs to conduct heat, we calculated
the thermal flux per unit temperature gradient �, referred to
as the thermal flux hereafter in the paper, using Eq. (5) for all
structures under analysis.

In Fig. 6(a) we show the thermal flux for Si NW 1
(upper dashed line) and Si MNWs 2, 4, and 6 for p = 0.85
as a function of temperature. The maxima on the thermal
flux curves are determined by the interplay between the
three-phonon umklapp and the phonon boundary scattering.
At low temperatures, the boundary scattering dominates; the
thermal flux increases with temperature due to the population
of high-energy phonon modes and approaches the maximum
value when τU ∼ τB . A subsequent rise of temperature leads to
an enhancement of the umklapp scattering and diminution of
the thermal flux. An increase of the cross section of the MNW
wide segments attenuates the phonon boundary scattering,
and the maximum of the thermal flux curves shifts to lower
temperatures: from T = 190 K for Si NW 1 to T = 100 K
for Si MNW 6. Therefore, at low temperatures (T < 120 K),
the thermal flux reduction is stronger in MNWs with the
smaller cross sections. Numerous high-energy phonon modes
in MNWs are trapped in the wide segments and possess a low
group velocity. The population of these modes with increasing
temperature almost does not increase the thermal flux. Thus, at
medium and high temperatures, the umklapp-limited thermal
flux in MNWs reduces stronger than that in the generic
NW. The ratio of the thermal fluxes in NW and MNW
η = �(Si NW)/�(Si MNW) increases with temperature and
reaches the values of 3.5 to 4, depending on the MNW cross
section [see Fig. 6(b)]. For these temperatures, the increase
of the MNW cross section makes the reduction of the thermal
flux stronger due to the corresponding rise of the number of the
trapped high-energy phonon modes, which do not carry heat
in MNWs. This is distinct from the case of NWs. The strong
modification of the phonon energy spectra and phonon group
velocities in MNWs in comparison with NWs also increases
the umklapp phonon scattering in MNWs as compared with
NWs. The latter is an additional reason for the thermal flux
reduction in MNWs.
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FIG. 6. (Color online) (a) Temperature dependence of the thermal
flux for Si NW (dashed line) and Si MNWs with dimensions 14 ×
14 × 8 ML/18 × 18 × 8 ML, 14 × 14 × 8 ML/26 × 26 ×
8 ML and 14 × 14 × 8 ML/34 × 34 × 8 ML. (b) Temperature
dependence of the ratio between thermal fluxes in Si NW and Si
MNWs. The dimensions in the graph are indicated in monoatomic
layers (ML).

An important quantity, which determines the thermal
conductivity and thermal flux, is the mode-dependent phonon
mean-free path (MFP) �s(qz). In our model �s(qz) is given
by

1/�s(qz) =
∑

r=B,U,imp

1/�r,s(qz), (10)

where �r,s(qz) = τr,s(qz) · υz,s(qz) and r = B, U, or imp.
Since the impurity scattering for the chosen parameter A

is by two orders of magnitude smaller than the umklapp
and phonon boundary scatterings, we discuss here only the
interplay between �B,s(qz) and �U,s(qz). The dependence
of the average phonon MFP 〈�〉 (ω) = g(ω)/

∑
s(ω) (1/�s)

on the phonon energy is presented in Fig. 7 for the NW
1 (solid black line) and MNW 8 [solid red (medium gray)
line] and MNW 9 (dashed blue line). The umklapp-limited
phonon MFPs �U,s(qz) in MNWs are significantly smaller
than those in NWs due to both reduction of the group velocity
and enhancement of the phonon scattering. The boundary-
limited MFPs �B,s(qz) are larger in MNWs due to the larger
average cross section of MNW in comparison with that in
NW [see Eqs. (6) and (7)]. As a result, at small energies
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FIG. 7. (Color online) Dependence of the average phonon MFP
on the phonon energy in Si NW 1 (solid black line) and Si MNW 8
[solid red (medium gray) line], and MNW 9 (dashed blue line).

when the umklapp scattering is weaker than the bound-
ary scattering 〈�〉MNW > 〈�〉NW, while for h̄ω > 5 meV
〈�〉MNW 	 〈�〉NW. Nevertheless, the integrand in Eq. (5)
averaged over all phonon branches is smaller in MNWs for all
energies due to the multiplication of �s(qz) by υz,s (qz) [see
Eq. (5)]. The augmentation of l2 decreases 〈�〉MNWfor almost
all energies. The energy-averaged phonon MFP calculated
from Fig. 7 constitutes ∼9.25 nm for the Si NW, ∼8.4 nm
for the MNW 8, and ∼6.9 nm for the MNW 9. The increase
in the average MNW cross section at fixed l1 and l2 attenuates
boundary scattering and increases the thermal flux.

In Fig. 8 we show the dependence of the ratio η of the
thermal fluxes in Si NW 1 and Si MNW 3 on temperature
for different values of the specularity parameter p = 0.0, 0,3,
0.6, and 0.9. For the interpretation of the data in Fig. 8, we
have separately calculated the thermal flux �B carried out by
the long-wavelength phonon modes (s,qz), which are mainly
scattered at the boundaries and described by the inequality
τU (s,qz) � τB(s,qz), and the thermal flux �U carried out by
the rest of the phonons, with the total thermal flux being
� = �B + �U . Our results show that for all values of p
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FIG. 8. (Color online) Temperature dependence of the ratio of
thermal fluxes in Si NW and Si MNWs. The results are shown
for different values of the specularity parameter p = 0.0, 0.3, 0.6,
and 0.9.
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under consideration, the RT flux �B is by a factor of ∼5
lower in MNW than that in NW due to the phonon trapping.
An increase of p decreases �B and strongly enhances �U

in NW due to attenuation of the boundary scattering of the
high-energy phonon modes. These modes in MNW do not
participate in the heat transfer because of their localization in
the wide segments. For this reason, the ratio between thermal
fluxes in the NW and the MNW appreciably depends on p:
for p = 0.0 �U (NW)/�U (MNW) ∼ 1, while for p = 0.9
�U (NW)/�U (MNW) ∼ 3. As a result, the flux ratio increases
with increasing p in a wide range of temperatures from 100 to
400 K. The RT thermal conductivity of the rough Si NWs26 is
already by a factor of 100 lower than the corresponding bulk
value. Our results suggest that the cross-section modulation of
the rough NWs allows for an additional decrease of the thermal
conductivity by a factor of 2 to 2.5 with a subsequent increase
of ZT .

The dependence of the ratio η of the thermal fluxes in Si
NW 1 and Si MNW 7 on Nz for the temperatures T = 100 K,
T = 200 K, T = 300 K, and T = 400 K and p = 0.85 is
presented in Fig. 9. The calculated points for Nz = 2,4,6, . . . ,18
are joined by the smooth curves as guides for an eye. The
overall trend of these curves is determined by the interplay of
two effects: (i) the phonon modes trapping, which suppresses
the heat flux and (ii) augmentation of the MNW average cross
section, which enhances the heat flux due to the emergence of
additional phonon modes for heat propagation and attenuation
of the phonon boundary scattering. In Si MNW with the
ultranarrow segments Nz = 2 ML, the trapping of phonon
modes is weak, and the thermal flux is larger than that in Si
NW (η < 1) due to the weakening of the phonon boundary
scattering in MNW in comparison with NWs. The rise of
Nz enhances the trapping, and for all temperatures under
consideration, the flux ratios rapidly increase with Nz rising
up to the values 8 to 12 ML and reach their maximum values
at around Nz = 16 to 18 ML. We expect that a subsequent
rise of Nz should decrease η due to augmentation of the MNW
average cross section. Nevertheless, additional investigation
of this limiting case is required. The latter is beyond the scope
of the present work and will be addressed elsewhere.
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FIG. 9. (Color online) Ratio of thermal fluxes in Si NW and
Si MNWs as a function of Nz. The results are shown for different
temperatures T = 100, 200, 300, and 400 K.

The acoustically mismatched cladding layers (coatings)
strongly influence phonon properties and the lattice thermal
conductivity of planar multilayer nanostructures and coated
NWs.1,6,13,15,29,53,57 To investigate the effect of the cross-
section-modulated coatings, we consider Si NWs (cores)
coated with the model SiO2 cross-section-modulated shells
(see MNWs 10–15 from Table II). The calculation of the
phonon energy spectra in Si/SiO2 MNWs are performed in
the framework of the fcc model of lattice dynamics.6,53,57

The fcc model is based on the three force constants, which
are expressed through the independent elastic constants of
the material. This model is one of the simplified models
of lattice dynamics, which is suitable for the description of
acoustic properties of heterostructures consisting of layers
with different acoustic properties. A detailed description of
this model has been recently presented by some of the present
authors in Ref. 6. We assume also that the model SiO2 material
possesses the same crystal structure as Si but has elastic
constants and density of real SiO2: c11 = 76.6 GPa, c12 =
14.8 GPa, c44 = 30.9 GPa, and ρ = 2.2 g cm−3.6

In Fig. 10 we show the ratio η of the thermal flux in Si NW
1 and Si/SiO2 MNWs 10–15 as a function of temperature.
The heat flux in Si/SiO2 MNWs drops by a factor of 3 to
7, depending on the MNW core and shell dimensions. The
reason for the thermal flux reduction is the same as in the case
of Si MNWs: decrease of the average phonon group velocity
and trapping of phonon modes into the MNW segments. In
Si NWs, partially coated with SiO2 (MNWs 13–15), the heat
propagates only through Si core, while in Si NWs fully coated
with SiO2 (MNWs 10–12), it propagates also through SiO2

shell. As a result, reduction of the heat flux is stronger in the
MNWs 13–15 in comparison with that in the MNWs 10–12.
In general, more complicated lattice dynamics models than the
fcc model are needed for an accurate quantitative description
of Si/SiO2 MNWs. Therefore, our results presented here
provide a qualitative description of their thermal properties.
Nevertheless, we have checked that the fcc model, only by a
few (∼2 to 10) percent, overestimates the heat flux in Si NWs
and MNWs in comparison with the five-parameter BvK model
due to the difference in phonon dispersion curves.
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FIG. 10. (Color online) Ratio of thermal fluxes in Si NW and
Si/SiO2 MNWs as a function of temperature. The results are shown
for different Si/SiO2 MNWs 10 to 15 (see Table II for the notations).
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IV. CONCLUSIONS

We theoretically investigated the phonon and thermal
properties of Si and Si/SiO2 cross-section-modulated NWs in
the framework of the five-parameter Born-von Karman-type
and the fcc models of lattice dynamics. A large number of
phonon modes in MNWs are trapped into MNWs segments.
As a result, the three- to sevenfold drop of the phonon
heat flux in a wide temperature range from 50 to 400 K is
reached for Si and Si/SiO2 cross-section-modulated NWs in
comparison with the generic Si NWs. We predict a similar
effect for the cross-section-modulated NWs made of other
materials. The obtained results indicate that the cross-section-
modulated NWs are excellent candidates for applications as
thermoelectric materials or thermal insulators.
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