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Abstract
Properties of phonons—quanta of the crystal lattice vibrations—in graphene have recently
attracted significant attention from the physics and engineering communities. Acoustic
phonons are the main heat carriers in graphene near room temperature, while optical phonons
are used for counting the number of atomic planes in Raman experiments with few-layer
graphene. It was shown both theoretically and experimentally that transport properties of
phonons, i.e. energy dispersion and scattering rates, are substantially different in a
quasi-two-dimensional system such as graphene compared to the basal planes in graphite or
three-dimensional bulk crystals. The unique nature of two-dimensional phonon transport
translates into unusual heat conduction in graphene and related materials. In this review, we
outline different theoretical approaches developed for phonon transport in graphene, discuss
contributions of the in-plane and cross-plane phonon modes, and provide comparison with
available experimental thermal conductivity data. Particular attention is given to analysis of
recent results for the phonon thermal conductivity of single-layer graphene and few-layer
graphene, and the effects of the strain, defects, and isotopes on phonon transport in these
systems.

(Some figures may appear in colour only in the online journal)
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1. Introduction

Heat removal has become a crucial issue for continuing
progress in the electronics industry owing to increased
levels of dissipated power density and speed of electronic
circuits [1]. Self-heating is a major problem in optoelectronics
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and photonics [2]. These facts stimulated recent interest
in thermal properties of materials. Acoustic phonons—fast
moving quanta of the crystal lattice vibrations—are the main
heat carriers in a variety of material systems. The phonon and
thermal properties of nanostructures are substantially different
from those of bulk crystals [3–15]. Semiconductor thin films
or nanowires do not conduct heat as well as bulk crystals
due to increased phonon–boundary scattering [4, 5] as well
as changes in the phonon dispersion and density of states
(DOS) [3–10]. However, theoretical studies suggested that
phonon transport in strictly two-dimensional (2D) and one-
dimensional (1D) systems can reveal exotic behavior, leading
to infinitely large intrinsic thermal conductivity [11, 12].
These theoretical results have led to discussions of the validity
of Fourier’s law in low-dimensional systems [16, 17] and
further stimulated interest in the acoustic phonon transport in
2D systems.

In this review, we focus on the specifics of the acoustic
phonon transport in graphene. After a brief summary of the
basics of thermal physics in nanostructures and experimental
data for graphene’s thermal conductivity, we discuss, in more
detail, various theoretical approaches to calculation of the
phonon thermal conductivity in graphene. Special attention
is given to the analysis of the most recent theoretical and
computational results on the relative contributions of different
phonon polarization branches to the thermal conductivity
of graphene. Readers interested in the experimental thermal
conductivity values of graphene and related materials in the
general context of carbon allotropes are referred to a different
review [18].

2. Basics of phonon transport and thermal
conductivity

The main experimental technique for investigation of the
acoustic phonon transport in a given material system is the
measurement of its lattice thermal conductivity [19, 20].
In this section, we define the main characteristics of heat
conduction. The thermal conductivity is introduced through
Fourier’s law [21, 22]:

�φ = −K∇T, (1)

where �φ is the heat flux, ∇T is the temperature gradient
and K = (Kαβ) is the thermal conductivity tensor. In the
isotropic medium, thermal conductivity does not depend on
the direction of the heat flow and K is treated as a constant.
The latter is valid for small temperature variations only. In
a wide temperature range, thermal conductivity is a function
of temperature, i.e. K ≡ K(T). In general, in solid materials
heat is carried by phonons and electrons so that K = Kp + Ke,
where Kp and Ke are the phonon and electron contributions,
respectively. In metals or degenerately doped semiconductors,
Ke is dominant due to the large density of free carriers. The
value of Ke can be determined from the measurement of the
electrical conductivity σ via the Wiedemann–Franz law [23]:

Ke

σT
= π2k2

B

3e2 , (2)

where kB is the Boltzmann’s constant and e is the charge
of an electron. Phonons are usually the main heat carriers
in carbon materials. Even in graphite, which has metal-like
properties [24], the heat conduction is dominated by acoustic
phonons [25]. This fact is explained by the strong covalent sp2

bonding, resulting in high in-plane phonon group velocities
and low crystal lattice anharmonicity for in-plane vibrations.

The phonon thermal conductivity can be written as

Kp = �j

∫
Cj(ω)υx,j(ω)υx,j(ω)τj(ω) dω, (3)

where summation is performed over the phonon polarization
branches j, which include two transverse acoustic branches
and one longitudinal acoustic branch, υx,j is the projection
of the phonon group velocity �υj = dωj/d�q on the X axis for
the jth branch, which, in many solids, can be approximated
by the sound velocity, τj is the phonon relaxation time, Cj =
h̄ωj∂N0(h̄ωj/kBT)/∂T is the contribution to heat capacity

from the jth branch, and N0(
h̄ωj
kBT ) = [exp(

h̄ωj
kBT ) − 1]−1 is the

Bose–Einstein phonon equilibrium distribution function. The
phonon mean free path (MFP) � is related to the relaxation
time through the expression � = τυ. In the relaxation-time
approximation (RTA), various scattering mechanisms, which
limit the MFP, are usually considered as additive, i.e. τ−1

j =∑
iτ

−1
i,j , where i denotes scattering mechanisms. In typical

solids, acoustic phonons, which carry the bulk of the heat,
are scattered by other phonons, lattice defects, impurities,
conduction electrons, and interfaces [26–29].

In ideal crystals, i.e. crystals without lattice defects
or rough boundaries, � is limited by the phonon–phonon
scattering due to the crystal lattice anharmonicity. In this
case, thermal conductivity is referred to as intrinsic. The
anharmonic phonon interactions, which lead to the finite
thermal conductivity in three dimensions, can be described
by the umklapp processes [26]. The umklapp scattering rates
depend on the Grüneisen parameter γ , which determines
the degree of the lattice anharmonicity [26, 27]. Thermal
conductivity is extrinsic when it is mostly limited by
the extrinsic effects such as phonon–rough boundary or
phonon–defect scattering.

In nanostructures, the phonon energy spectra are quan-
tized due to the spatial confinement of the acoustic phonons.
The quantization of the phonon energy spectra usually
leads to decreasing phonon group velocity. The modification
of the phonon energies, group velocities and density of
states, together with phonon scattering from boundaries,
affect the thermal conductivity of nanostructures. In most
cases, the spatial confinement of acoustic phonons results
in a reduction of the phonon thermal conductivity [30, 31].
However, it was predicted that the thermal conductivity of
nanostructures embedded within the acoustically hard barrier
layers can be increased via spatial confinement of acoustic
phonons [6, 7, 10, 32].

The phonon–boundary scattering can be evaluated as [29]

1
τB,j

= υx,j

D

1 − p

1 + p
, (4)
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where D is the nanostructure or grain size and p is the
specularity parameter, defined as a probability of specular
scattering at the boundary. The momentum-conserving
specular scattering (p = 1) does not add to thermal resistance.
Only diffuse phonon scattering from rough interfaces (p → 0),
which changes the phonon momentum, limits the phonon
MFP. One can find p from the surface roughness or use it as
a fitting parameter to experimental data. The commonly used
expression for the phonon specularity is given by [29, 33, 34]

p(λ) = exp
(

−16π2η2

λ2

)
, (5)

where η is the root mean square deviation of the height of the
surface from the reference plane and λ is the wavelength of
the incident phonon.

In the case when the phonon–boundary scattering is
dominant, thermal conductivity scales with the nanostructure
or grain size D as Kp ∼ Cpυ� ∼ Cpυ

2τB ∼ CpυD. In the
very small structures with D � �, the thermal conductivity
dependence on the physical size of the structure becomes
more complicated due to the strong quantization of the phonon
energy spectra [6, 30, 32]. The specific heat Cp depends on
the phonon density of states, which leads to different Cp(T)

dependences in three-dimensional (3D), two-dimensional
and one-dimensional systems, and is reflected in the K(T)

dependence at low T [26, 29]. In bulk at low T K(T) ∼ T3,
while K(T) ∼ T2 in 2D systems.

Thermal conductivity K defines how well a given material
conducts heat. Another characteristic—thermal diffusivity,
α—defines how fast the material conducts heat. Thermal
diffusivity is given by the expression

α = K

Cpρm
, (6)

where ρm is the mass density. Many experimental techniques
measure thermal diffusivity rather than thermal conductivity.

3. Experimental data for thermal conductivity of
graphene

We start by providing a brief summary of the experimental
data available for the thermal conductivity of graphene. The
first measurements of heat conduction in graphene [35–40]
were carried out at UC Riverside in 2007 (see figure 1).
The investigation of the phonon transport was made possible
by the development of the optothermal Raman measurement
technique. The experiments were performed with large-area
suspended graphene layers exfoliated from high-quality Kish
and highly ordered pyrolytic graphite. It was found that the
thermal conductivity varies in a wide range and can exceed
that of the bulk graphite, which is ∼2000 W mK−1 at room
temperature (RT). It was also determined that the electronic
contribution to heat conduction in the ungated graphene near
RT is much smaller than that of phonons, i.e. Ke � Kp. The
phonon MFP in graphene was estimated to be of the order of
800 nm near RT [36].

Several independent studies, which followed, also
utilized the Raman optothermal technique but modified it

via addition of a power meter under the suspended portion
of graphene. It was found that the thermal conductivity
of suspended high-quality chemical vapor deposited (CVD)
graphene exceeded ∼2500 W mK−1 at 350 K, and it was as
high as K ≈ 1400 W mK−1 at 500 K [41]. The reported value
was also larger than the thermal conductivity of bulk graphite
at RT. Another Raman optothermal study with the suspended
graphene found the thermal conductivity in the range from
∼1500 to ∼5000 W mK−1 [42]. Another group that repeated
the Raman-based measurements found K ≈ 630 W mK−1

for a suspended graphene membrane [43]. The differences in
the actual temperature of graphene under laser heating, strain
distribution in the suspended graphene of various sizes and
geometries can explain the data variation.

Another experimental study reported the thermal con-
ductivity of graphene to be ∼1800 W mK−1 at 325 K and
∼710 W mK−1 at 500 K [44]. These values are lower
than that of bulk graphite. However, instead of measuring
the light absorption in graphene under conditions of their
experiment, the authors of [44] assumed that the optical
absorption coefficient should be 2.3%. It is known that, due
to many-body effects, the absorption in graphene is a function
of wavelength λ, when λ > 1 eV [45–47]. The absorption of
2.3% is observed only in the near-infrared at ∼1 eV. The
absorption steadily increases with decreasing λ (increasing
energy). The 514.5 nm and 488 nm Raman laser lines
correspond to 2.41 eV and 2.54 eV, respectively. At 2.41 eV
the absorption is about 1.5 × 2.3% ≈ 3.45% [45]. The value
of 3.45% is in agreement with the one reported in another
independent study [48]. Replacing the assumed 2.3% with
3.45% in the study reported in [44] gives ∼2700 W mK−1 at
325 K and 1065 W mK−1 near 500 K. These values are higher
than those for the bulk graphite and consistent with the data
reported by other groups [41, 48], where the measurements
were conducted by the same Raman optothermal technique
but with the measured light absorption.

The data for suspended or partially suspended graphene is
closer to the intrinsic thermal conductivity because suspension
reduces thermal coupling to the substrate and scattering on
the substrate defects and impurities. The thermal conductivity
of fully supported graphene is smaller. The measurements
for exfoliated graphene on SiO2/Si revealed in-plane K ≈
600 W mK−1 near RT [49]. Solving the Boltzmann transport
equation (BTE) and comparing with their experiments, the
authors determined that the thermal conductivity of free
graphene should be ∼3000 W mK−1 near RT.

Despite the noted data scatter in the reported experimen-
tal values of the thermal conductivity of graphene, one can
conclude that it is very large compared to that for bulk silicon
(K = 145 W mK−1 at RT) or bulk copper (K = 400 W mK−1

at RT)—important materials for electronic applications. The
differences in K of graphene can be attributed to variations in
the graphene sample lateral sizes (length and width), thickness
nonuniformity due to the mixing between single-layer and
few-layer graphene, material quality (e.g. defect concentration
and surface contaminations), grain size and orientation,
as well as strain distributions. Often the reported thermal
conductivity values of graphene corresponded to different
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Figure 1. Illustration of optothermal micro-Raman measurement technique developed for investigation of phonon transport in graphene. (a)
Schematic diagram of the thermal conductivity measurement showing suspended FLG flakes and excitation laser light. (b) Optical
microscopy images of FLG attached to metal heat sinks. (c) Colored scanning electron microscopy image of the suspended graphene flake
to clarify typical structure geometry. (d) Experimental data for Raman G-peak position as a function of laser power, which determines the
local temperature rise in response to the dissipated power. (e) Finite-element simulation of temperature distribution in the flake with the
given geometry used to extract the thermal conductivity. Reproduced with permission from [38]. Copyright 2010 Nature Publishing Group.

sample temperatures T , despite the fact that the measurements
were conducted at ambient temperature. The strong heating
of the samples was required due to the limited spectral
resolution of the Raman spectrometers used for temperature
measurements. Naturally, the thermal conductivity values
determined at ambient temperature but for the samples heated
to T ∼ 350 and 600 K over a substantial portion of their
area would be different and cannot be directly compared. One
should also note that the data scatter for thermal conductivity
of carbon nanotubes (CNTs) is much larger than that for
graphene. For a more detailed analysis of the experimental
uncertainties the readers are referred to a comprehensive
review [18].

4. Phonon transport in suspended few-layer
graphene

The phonon thermal conductivity undergoes an interesting
evolution when the system dimensionality changes from
2D to 3D. This evolution can be studied with the help
of suspended few-layer graphene (FLG) with increasing

thickness H–number of atomic planes n. It was reported
in [38] that thermal conductivity of suspended uncapped FLG
decreases with increasing n approaching the bulk graphite
limit (see figure 2). This trend was explained by considering
the intrinsic quasi-2D crystal properties described by the
phonon umklapp scattering [38]. As n in FLG increases,
the phonon dispersion changes and more phase space states
become available for phonon scattering, leading to thermal
conductivity decrease. The phonon scattering from the top and
bottom boundaries in suspended FLG is limited if constant
n is maintained over the layer length. The small thickness of
FLG (n < 4) also means that phonons do not have a transverse
cross-plane component in their group velocity, leading to an
even weaker boundary scattering term for the phonons. In
thicker FLG films the boundary scattering can increase due
to the nonzero cross-plane phonon velocity component. It is
also harder to maintain constant thickness through the whole
area of the FLG flake. These factors can lead to a thermal
conductivity below the graphite limit. The graphite value is
recovered for thicker films.
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Figure 2. Measured thermal conductivity as a function of the
number of atomic planes in suspended FLG. The dashed straight
lines indicate the range of bulk graphite thermal conductivities. The
blue diamonds were obtained from the first-principles theory of
thermal conduction in FLG based on the actual phonon dispersion
and accounting for all allowed three-phonon umklapp scattering
channels. The green triangles are Callaway–Klemens model
calculations, which include extrinsic effects characteristic of thicker
films. Reproduced with permission from [38]. Copyright 2010
Nature Publishing Group.

The experimentally observed evolution of the thermal
conductivity in FLG with n varying from 1 to n ∼ 4 [38] is
in agreement with the theory for the crystal lattices described
by the Fermi–Pasta–Ulam Hamiltonians [50]. The molecular
dynamics (MD) calculations for graphene nanoribbons with
the number of planes n from one to eight [51] also gave
a thickness dependence of the thermal conductivity in
agreement with the UC Riverside experiments [38]. The
strong reduction of the thermal conductivity as n changes
from one to two is in line with the earlier theoretical
predictions [52]. In another reported study, the Boltzmann
transport equation was solved under the assumptions that in-
plane interactions are described by the Tersoff potential while
the Lennard-Jones potential models interactions between
atoms belonging to different layers [53, 54]. The obtained
results suggested a strong thermal conductivity decrease as n
changed from one to two and slower decrease for n > 2.

The thermal conductivity dependence on the FLG is
entirely different for the encased FLG where thermal transport
is limited by the acoustic phonon scattering from the top
and bottom boundaries and disorder. The latter is common
when FLG is embedded between two layers of dielectrics. An
experimental study [55] found K ≈ 160 W mK−1 for encased
single-layer graphene (SLG) at T = 310 K. It increases to
∼1000 W mK−1 for graphite films with the thickness of 8 nm.
It was also found that the suppression of thermal conductivity
in encased graphene, as compared to bulk graphite, was
stronger at low temperatures, where K was proportional to Tβ

with 1.5 < β < 2 [55]. Thermal conduction in encased FLG
was limited by the rough boundary scattering and disorder
penetration through graphene.

5. Phonon spectra in graphene, few-layer graphene
and graphene nanoribbons

Intriguing thermal and electrical properties of graphene,
FLG [18, 35–38, 55–58] and graphene nanoribbons
(GNRs) [59–61] stimulate investigations of phonon energy
spectra in these materials and structures [62–76]. The
phonon energy spectrum is important for determining the
sound velocity, phonon density of states, phonon–phonon or
electron–phonon scattering rates, and lattice heat capacity, as
well as the phonon thermal conductivity. The optical phonon
properties manifest themselves in Raman measurements. The
number of graphene layers and their quality and stacking order
can be clearly distinguished using Raman spectroscopy [38,
77–80]. For these reasons, significant efforts have been
made to accurately determine the phonon energy dispersion
in graphite [62–65], graphene [38, 53, 66–71, 76] and
GNRs [72–75, 81], and to reveal specific features of their
phonon modes.

The phonon dispersion in graphite along the �–M–K–�

directions (see figure 3(a), where the graphene Brillouin
zone is shown) measured by x-ray inelastic scattering
was reported in [62, 63]. A number of research groups
calculated the phonon energy dispersion in graphite, graphene
and GNRs using various theoretical approaches, including
the continuum model [74, 75], Perdew–Burke–Ernzerhof
generalized gradient approximation (GGA) [62, 64, 65],
first-order local density function approximation (LDA) [64,
66, 70], fourth- and fifth-nearest neighbor force constant
(4NNFC and 5NNFC) approaches [63, 65, 71] and Born–von
Karman or valence force field (VFF) model of the lattice
dynamics [38, 67, 68, 76], and utilized the Tersoff and Brenner
potentials [69] or Tersoff and Lennard-Jones potentials [53,
54]. GGA and LDA models are ab initio models, while
all other models are based on different sets of the fitting
parameters, which are determined from comparison with the
experimental phonon dispersion [62, 63, 82].

The number of parameters in the theoretical models
depends on the model specifics and the number of atomic
neighbors considered. The number of parameters varies from
five [65] to 23 [71]. For example, our VFF model for
graphene used only six parameters [76]. In this model,
all interatomic forces are resolved into bond-stretching and
bond-bending forces [76, 83–85]. This model takes into
account stretching and bending interactions with two in-plane
and two out-of-plane atomic neighbors as well as doubled
stretching–stretching interactions with the nearest in-plane
neighbors [76]. The honeycomb crystal lattice of graphene
utilized in this model is presented in figure 3(b). The
rhombic unit cell of graphene, shown as a dashed region,
contains two atoms and is defined by two basis vectors,
�a1 = a(3,

√
3)/2 and �a2 = a(3, −√

3)/2, where a = 0.142 nm
is the distance between two nearest carbon atoms. The
six phonon polarization branches s = 1, . . . , 6 in SLG are
shown in figure 4. These branches are (i) out-of-plane
acoustic (ZA) and out-of-plane optical (ZO) phonons with the
displacement vector along the Z axis; (ii) transverse acoustic
(TA) and transverse optical (TO) phonons, which corresponds

5
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Figure 3. (a) Reciprocal lattice of graphene. (b) Graphene crystal
lattice. The rhombic unit cell is shown as a shaded region.
Reproduced with permission from [76]. Copyright 2009 American
Physical Society.

to the transverse vibrations within the graphene plane; (iii)
longitudinal acoustic (LA) and longitudinal optical (LO)
phonons, which corresponds to the longitudinal vibrations
within the graphene plane.

Although various theoretical models are in qualitative
agreement with each other, they predict substantially different
phonon frequencies at the �, M or K points of the Brillouin
zone. Moreover, some of the models give the same frequencies
for the LO–LA phonons [65, 66, 69] and ZO–TA phonons [63,
64, 67, 76] at the M point, while the rest of the models predict
different frequencies for these phonons at the M point [62,
68, 70]. The comparison between phonon frequencies at
the high-symmetry points of the Brillouin zone is presented
in tables 1 and 2. The discrepancy in the calculated
phonon dispersion can easily translate into differences in
the predicted thermal conductivity values. Specifically, the
relative contributions of the LA, TA, and ZA phonons to heat

Figure 4. Phonon frequencies ωs in graphene calculated using the
valence force field model [37].

transport can vary in a wide range depending on the specifics
of the phonon dispersion used.

The unit cell of the n-layer graphene contains 2n
atoms, therefore 6n quantized phonon branches appear in
n-layer graphene. In figures 5(a) and (b) we show the
phonon dispersions in bilayer graphene. Weak van der
Waals interaction between monolayers leads to the coupling
of long-wavelength phonons only and quantization of the
low-energy part of the spectrum with q < 0.1qmax for LA,
TA, LO, TO and ZO phonons and with q < 0.4qmax for ZA
phonons (see figure 5(b)). The modification of the phonon
energy spectrum in n-layer graphene as compared with that
in single-layer graphene results in a substantial change of the
three-phonon scattering rates and a reduction of the intrinsic
thermal conductivity in n-layer graphene [38, 53, 54].

6. Specifics of the acoustic phonon transport in
two-dimensional crystals

We now address in more detail some specifics of the acoustic
phonon transport in 2D systems. Investigation of the heat
conduction in graphene [35, 36] and CNTs [86] raised
the issue of ambiguity in the definition of the intrinsic
thermal conductivity for 2D and 1D crystal lattices. It was
theoretically shown that the intrinsic thermal conductivity
limited by the crystal anharmonicity has a finite value
in 3D bulk crystals [12, 50]. However, many theoretical
models predict that the intrinsic thermal conductivity reveals
a logarithmic divergence in strictly 2D systems, K ∼ ln(N),
and a power-law divergence in 1D systems, K ∼ Nα , with
the number of atoms N (0 < α < 1) [12, 16, 50, 86–90].
The logarithmic divergence can be removed by introduction
of the extrinsic scattering mechanisms such as scattering from
defects or coupling to the substrate [50]. Alternatively, one
can define the intrinsic thermal conductivity of a 2D crystal
for a given size of the crystal.

Graphene is not an ideal 2D crystal, considered in most
of the theoretical works, since graphene atoms vibrate in
three directions. Nevertheless, the intrinsic graphene thermal
conductivity strongly depends on the graphene sheet size
due to weak scattering of the low-energy phonons by other
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Table 1. Energies of ZO and LO phonons at the � point in graphite and graphene.

Sample �ZO (cm−1) �LO (cm−1) Comments References

Graphite — 1583a Experiment: x-ray scattering a[62]
Graphite — 1581b Experiment: x-ray scattering b[63]
Graphite 899c 1593c Theory: LDA c[64]
Graphite ∼820a, 879c, 881c 1559c, 1561c, 1581–1582a Theory: GGA d[82]
Graphite 868b 1577b Theory: 5NNFC e[65]
Graphite ∼920d ∼1610d Theory: six-parameter force constant model f[66]
Graphene 879c, 881c, 884e 1554c, 1559c, 1569e Theory: GGA g[70]
Graphene 890g, 896g, ∼900f 1586f, 1595g, 1597g Theory: LDA
Graphene 893 1581 Theory: Born–von Karman [67]
Graphene 889h, 883.5i 1588h, 1555i Theory: VFF model h[68],

i[76]
Graphene ∼1300 ∼1685 Theory: optimized Tersoff [69]

∼1165 ∼1765 Theory: optimized Brenner

Table 2. Phonon energies at K and M points in graphite and graphene.

Sample KZA (cm−1) KTA (cm−1) KLA (cm−1) Comments References

Graphite — — 1194a Experiment: x-ray scattering;
ωLO(M) > ωLA(M);

a[62]

Graphite 542b 1007b 1218b Experiment: x-ray scattering;
ωLO(M) > ωLA(M);
ωZO(M) ≈ ωTA(M)

b[63]

Graphite — — — Experiment: high-resolution
electron-energy-loss spectroscopy;
ωLO(M) > ωLA(M);
ωZO(M) < ωTA(M)

[82]

Graphite 540c 1009c 1239c Theory: LDA;
ωLO(M) > ωLA(M)
ωZO(M) ≈ ωTA(M)

c[64]
d[65]

Graphite 534c, 540c ∼960a, 998c,
999c

1220a, 1216c,
1218c

Theory: GGA;
a,cωLO(M) > ωLA(M);
cωZO(M) ≈ ωTA(M)

Graphite 542b 1007b 1218b Theory: 5NNFC;
ωLO(M) > ωLA(M);
ωZO(M) ≈ ωTA(M)

Graphene 535c, 539d 997c, 1004d 1213c, 1221d Theory: GGA;
cωLO(M) > ωLA(M);
dωLO(M) ≈ ωLA(M);
c,dωZO(M) ≈ ωTA(M)

Graphene ∼520e,f ∼990f,
∼1000e

∼1250f,
∼1220e

Theory: LDA; eωLO(M) ≈
ωLA(M); eωZO(M)ωZA(M) �
ωTA(M)fωLO(M) >
ωLA(M); fωZO(M) > ωZA(M);

e[66]
f[70]

Graphene 495 1028 1199 Theory: Born–von Karman model;
ωLO(M) > ωLA(M);
ωZO(M) ≈ ωTA(M)

[67]

Graphene 544g, 532h 1110g, 957h 1177g, 1267h Theory: VFF model;
g,hωLO(M) > ωLA(M);
gωZO(M) < ωTA(M);
hωZO(M) ≈ ωTA(M)

g[68]
h[76]

Graphene ∼635 ∼1170 ∼1170 Theory: optimized Tersoff potential;
ωLO(M) ≈ ωLA(M);
ωZO(M) > ωTA(M)

[69]

∼585 ∼1010 ∼1240 Theory: optimized Brenner potential;
ωLO(M) > ωLA(M);
ωZO(M) > ωTA(M)

phonons in the system. Therefore, the phonon–boundary
scattering is an important mechanism for phonon relaxation
in graphene. Different studies [91, 92] also suggested that
an accurate accounting for the higher-order anharmonic

processes, i.e. above three-phonon umklapp scattering, and
inclusion of the normal phonon processes in consideration,
allow one to limit the low-energy phonon MFP. The normal
phonon processes do not contribute directly to thermal

7
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Figure 5. Phonon energy spectra in bilayer graphene calculated
using the valence force field model shown for (a) the �–M direction
and (b) near the Brillouin zone center. Reproduced with permission
from [38]. Copyright 2010 Nature Publishing Group.

resistance but affect the phonon mode distribution [53, 93].
However, even these studies found that the graphene sample
has to be very large (>10 μm) to obtain the size-independent
thermal conductivity.

The specific phonon transport in a quasi-2D system
such as graphene can be illustrated with an expression
derived by Klemens specifically for graphene [25, 94]. In the
framework of the BTE approach and the RTA, the intrinsic
umklapp-limited thermal conductivity of graphene can be
written as [25, 94]

K = ρm

2πγ 2

ῡ4

fmT
ln

(
fm
fB

)
. (7)

Here, fm is the upper limit of the phonon frequencies
defined by the phonon dispersion, ῡ is the average phonon

group velocity and fB = (
Mῡ3fm/4πγ 2kBTL

)1/2
is the

size-dependent low-bound cut-off frequency for acoustic
phonons, introduced by limiting the phonon MFP with the
graphene layer size L.

In [95] we improved equation (7) by taking into account
the actual maximum phonon frequencies and Grüneisen
parameters γs(s = TA, LA) determined separately for LA
and TA phonon branches. The Grüneisen parameters were
computed by averaging the phonon mode-dependent γs(�q) for
all relevant phonons (here �q is the wavevector):

K = 1

4πkBT2h

∑
s=TA,LA

∫ qmax

qmin

{[
h̄ωs(q)

dωs(q)

dq

]2

× τK
U,s(q)

exp[h̄ωs(q)/kBT]
[exp[h̄ωs(q)/kBT] − 1]2 q

}
dq. (8)

Here h̄ωs(q) is the phonon energy, h = 0.335 nm is the
graphene layer thickness and τK

U,s(q) is the three-phonon
mode-dependent umklapp relaxation time, which was derived
using an expression from [25, 26] but introducing separate
lifetimes for LA and TA phonons:

τK
U,s = 1

γ 2
s

Mῡ2
s

kBT

ωs,max

ω2 , (9)

where s = TA, LA, ῡs is the average phonon velocity for
a given branch, ωs,max = ω(qmax) is the maximum cut-off
frequency for a given branch and M is the mass of a graphene
unit cell. In [25, 94, 95] the contribution of ZA phonons to
thermal transport has been neglected because of their low
group velocity and large Grüneisen parameter γZA [64, 95].
equation (9) can be used to calculate thermal conductivity
with the actual dependence of the phonon frequency ωs(q) and
the phonon velocity dωs(q)/dq on the phonon wavenumber.
To simplify the model, one can use the linear dispersion
ωs(q) = ῡsq and re-write it as

KU = h̄2

4πkBT2h

×
∑

s=TA,LA

∫ ωmax

ωmin

{
ω3τK

U,s(ω)
exp[h̄ω/kT]

[exp[h̄ω/kT] − 1]2

}
dω.

(10)

Substituting equation (9) to (10) and performing integration
one obtains

KU = M

4πTh

∑
s=TA,LA

ωs,maxῡ
2
s

γ 2
s

F(ωs,min, ωs,max), (11)

where

F(ωs,min, ωs,max) =
∫ h̄ωs,max/kBT

h̄ωs,min/kBT
ξ

exp(ξ)

[exp(ξ) − 1]2 dξ

=
[

ln{exp(ξ) − 1} + ξ

1 − exp(ξ)
− ξ

]∣∣∣∣
h̄ωs,max/kBT

h̄ωs,min/kBT
. (12)

In the above equation, ξ = h̄ω/kBT , and the upper
cut-off frequencies ωs,max are defined from the actual
phonon dispersion in graphene (see figure 4): ωLA,max =
2π fLA,max(�K) = 241 rad ps−1, ωTA,max = 2π fTA,max(�K) =
180 rad ps−1.

8
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The integrand in equation (12) can be further simplified
near RT when h̄ωs,max > kBT , and it can be expressed as

F(ωs,min) ≈ − ln{| exp(h̄ωs,min/kBT) − 1|}
+ h̄ωs,min

kBT

exp(h̄ωs,min/kBT)

exp(h̄ωs,min/kBT) − 1
. (13)

There is a clear difference between the heat transport in basal
planes of bulk graphite and in single-layer graphene [25, 94].
In the former, the heat transport is approximately two
dimensional only up to some lower-bound cut-off frequency
ωmin. Below ωmin there appears to be strong coupling with
the cross-plane phonon modes and heat starts to propagate
in all directions, which reduces to negligible values the
contributions of these low-energy modes to heat transport
along basal planes. In bulk graphite, there is a physically
reasonable reference point for the onset of the cross-plane
coupling, which is the ZO′ phonon branch near ∼4 THz
observed in the spectrum of bulk graphite [25, 96]. The
presence of the ZO′ branch and corresponding ωmin =
ωZO′ (q = 0) allows one to avoid the logarithmic divergence
in the umklapp-limited thermal conductivity integral (see
equations (10)–(13)) and calculate it without considering
other scattering mechanisms.

The physics of heat conduction is principally different
in graphene, where the phonon transport is 2D all the way
to zero phonon frequency ω(q = 0) = 0. There is no onset
of the cross-plane heat transport at the long-wavelength limit
in the system, which consists of only one atomic plane.
This is no ZO′ branch in the phonon dispersion of graphene
(see figure 4). Therefore, the lower-bound cut-off frequencies
ωs,min for each s are determined from the condition that the
phonon MFP cannot exceed the physical size L of the flake,
i.e.

ωs,min = ῡs

γs

√
Mῡs

kBT

ωs,max

L
. (14)

We would like to emphasize here that using size-independent
graphite ωmin for SLG or FLG (as has been proposed
in [97]) is without scientific merit and leads to an erroneous
calculation of thermal conductivity, as described in detail
in [98]. Equations (12)–(14) constitute a simple analytical
model for the calculation of the thermal conductivity of
the graphene layer, which retains such important features of
graphene phonon spectra as different ῡs and γs for LA and TA
branches. The model also reflects the two-dimensional nature
of heat transport in graphene all the way down to zero phonon
frequency.

In figure 6, we present the dependence of thermal
conductivity of graphene on the dimension of the flake L. The
data are presented for the averaged values of the Grüneisen
parameters γLA = 1.8 and γTA = 0.75 obtained from ab initio
calculations, as well as for several other close sets of γLA,TA
to illustrate the sensitivity of the result to the Grüneisen
parameters. For small graphene flakes, the K dependence on
L is fairly strong. It weakens for flakes with L ≥ 10 μm.
The calculated values are in good agreement with available
experimental data for suspended exfoliated [35, 36] and CVD

Figure 6. Calculated room-temperature thermal conductivity of
graphene as a function of the lateral size for several values of the
Grüneisen parameter. Experimental data points from [35, 36]
(circle), [41] (square) and [42] (rhomb) are shown for comparison.

graphene [41, 42]. The horizontal dashed line indicates the
experimental thermal conductivity for bulk graphite, which
is exceeded by graphene’s thermal conductivity at smaller L.
Thermal conductivity, presented in figure 6, is an intrinsic
quantity limited by the three-phonon umklapp scattering
only. But it is determined for a specific graphene flake size
since L defines the lower-bound (long-wavelength) cut-off
frequency in umklapp scattering through equation (14). In
experiments, thermal conductivity is also limited by defect
scattering. When the size of the flake becomes very large with
many polycrystalline grains, the scattering on their boundaries
will also lead to phonon relaxation. The latter can be
included in our model through adjustment of L. The extrinsic
phonon scattering mechanisms or high-order phonon–phonon
scatterings prevent indefinite growth of thermal conductivity
of graphene with L.

7. The Q-space diagram theory of phonon transport
in graphene

The simple models described in the previous section are
based on the Klemens-like expressions for the relaxation
time (see equation (9)). Therefore, they do not take into
account all peculiarities of the 2D three-phonon umklapp
processes in SLG or FLG, which are important for the
accurate description of thermal transport. There are two types
of three-phonon umklapp scattering process [26]. The first
type is the scattering when a phonon with the wavevector
�q(ω) absorbs another phonon from the heat flux with the
wavevector �q′(ω′), i.e. the phonon leaves the state �q. For
this type of scattering process the momentum and energy
conservation laws are written as

�q(ω) + �q′(ω′) = �bi + �q′′(ω′′), i = 1, 2, 3

ω + ω′ = ω′′,
(15)

The processes of the second type are those when the phonons
�q(ω) of the heat flux decay into two phonons with the
wavevectors �q′(ω′) and �q′′(ω′′), i.e. leave the state �q(ω),

9
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or, alternatively, two phonons �q′(ω′) and �q′′(ω′′) merge
together, forming a phonon with the wavevector �q(ω), which
corresponds to the phonon coming to the state �q(ω). The
conservation laws for this type are given by

�q(ω) + �bi = �q′(ω′) + �q′′(ω′′), i = 4, 5, 6

ω = ω′ + ω′′.
(16)

In equations (15) and (16) �bi = ��̄i, i = 1, 2, . . . , 6 is one of
the vectors of the reciprocal lattice (see figure 3(a)).

Calculations of the thermal conductivity in graphene
taking into account all possible three-phonon umklapp
processes allowed by equations (15) and (16) and actual
phonon dispersions were carried out for the first time
in [76]. For each phonon mode (qi, s), all pairs of the
phonon modes ( �q′, s′) and ( �q′′, s′′) were found such that
the conditions of equations (15) and (16) are met. As a
result, in ( �q′) space the phase diagrams were constructed
for all allowed three-phonon transitions [76]. Using the
long-wave approximation (LWA) for a matrix element of the
three-phonon interaction, the authors of [76] obtained for the
umklapp scattering rates

1

τ
(I),(II)
U (s, �q)

= h̄γ 2
s (�q)

3πρυ2
s (�q)

×
∑

s′s′′;�bi

�
ωs(�q)ω′

s′(�q′)ω′′
s′′(�q′′)

× {N0[ω′
s′(�q′)] ∓ N0[ω′′

s′′(�q′′)] + 1
2 ∓ 1

2 }
× δ[ωs(�q) ± ω′

s′(�q′) − ω′′
s′′(�q′′)] dq′

l dq′⊥. (17)

Here q′
l and q′⊥ are the components of the vector �q′ parallel

or perpendicular to the lines defined by equations (15) and
(16), respectively, γs(�q) is the mode-dependent Grüneisen
parameter, which is determined for each phonon wavevector
and polarization branch, and ρ is the surface mass density.
In equation (17) the upper signs correspond to the processes
of the first type while the lower signs correspond to those of
the second type. The integrals for ql and q⊥ are taken along
and perpendicular to the curve segments, respectively, where
the conditions of equations (15) and (16) are met. Integrating
along q⊥ in equation (17) one can obtain the line integral

1

τ
(I),(II)
U (s, �q)

= h̄γ 2
s (�q)ωs(�q)

3πρυ2
s (�q)

∑
s′s′′;�b

∫
l

±(ω′′
s′′ − ωs)ω

′′
s′′

υ⊥,s′(ω′
s′)

× (N′
0 ∓ N′′

0 + 1
2 ∓ 1

2 ) dq′
l. (18)

The phonon scattering on the rough edges of graphene
can be evaluated using equation (4). The total phonon
relaxation rate is given by

1
τtot(s, q)

= 1
τU(s, q)

+ 1
τB(s, q)

. (19)

The sensitivity of the room temperature thermal
conductivity, calculated using equations (17)–(19), to the
value of the specular parameter of phonon–boundary
scattering is illustrated in figure 7. The data are presented

Figure 7. Calculated room-temperature thermal conductivity of
suspended graphene as a function of the specularity parameter p for
the phonon scattering from the flake edges. Note a strong
dependence on the size of the graphene flakes. Experimental data
points from [35, 36] (circle), [41] (square) and [42] (rhomb) are
shown for comparison.

for different sizes (widths) of the graphene flakes. The
experimental data points for suspended exfoliated [35, 36]
and CVD [41, 42] graphene are also shown for comparison.
Table 3 provides representative experimental and theoretical
data for the suspended and supported graphene.

8. Thermal conductivity of graphene nanoribbons

Measurements of thermal properties of graphene stimulated a
surge of interest in theoretical and experimental studies of heat
conduction in graphene nanoribbons [59–61, 81, 99–110].
It is important to understand how lateral sizes affect the
phonon transport properties from both fundamental science
and practical application points of view. In the last few years
a number of theoretical works investigated phonon transport
and heat conduction in graphene nanoribbons with various
lengths, widths, edge roughnesses and defect concentrations.
The authors used MD simulations [59–61, 99–102], the
nonequilibrium Green’s function method [103–105] and BTE
approaches [81, 106].

Keblinsky and co-workers [59] found from the MD
study that the thermal conductivity of graphene is K ≈
8000–10 000 W mK−1 at RT for the square graphene sheet.
The K value was size independent for L > 5 nm [59]. For
the ribbons with fixed L = 10 nm and width W varying
from 1 to 10 nm, K increased from ∼1000 W mK−1 to
7000 W mK−1. The thermal conductivity in GNRs with rough
edges can be suppressed by orders of magnitude as compared
to that in GNRs with perfect edges [59, 61]. The isotopic
superlattice modulation of GNRs or defects of crystal lattices
also significantly decreases the thermal conductivity [104,
105]. The uniaxial stretching applied in the longitudinal
direction enhances the low-temperature thermal conductance
for the 5 nm armchair or zigzag GNRs to 36% due to
the stretching-induced convergence of phonon spectra to the
low-frequency region [103].
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Table 3. Thermal conductivity of graphene and graphene nanoribbons.

Sample K (W mK−1) Method Comments References

Graphene ∼2000–5000 Raman optothermal Suspended; exfoliated [35, 36]
FLG 1300–2800 Raman optothermal Suspended; exfoliated; n = 2–4 [38]
Graphene ∼2500 Raman optothermal Suspended; CVD [41]
Graphene ∼1500–5000 Raman optothermal Suspended; CVD [42]
Graphene 600 Raman optothermal Suspended; exfoliated; T ∼ 660 K [43]
Graphene 600 Electrical Supported; exfoliated; [49]
FLG
nanoribbon

1100 Electrical self-heating Supported; exfoliated; n < 5 [109]

FLG
nanoribbon

80–150 Electrical self-heating Supported [110]

Graphene ∼2430 Theory: BTE, third-order
IFCs

K(graphene) ≥ K(carbon nanotube) [93]

Graphene 1000–8000 Theory: BTE + RTA
γLA, γTA

Strong size dependence [95]

Graphene 2000–8000 Theory: BTE + RTA, γs(q) Strong edge, width and Grüneisen
parameter dependence

[76]

Graphene ∼4000 Theory: ballistic Strong width dependence [60]
Graphene 500–1100 Theory: molecular dynamic,

optimized Tersoff
T ∼ 435 K, calculation domain
4.4 × 4.3 × 1.6 nm3: periodic
boundary condition

[111]

Graphene ∼2900 Theory: MD simulation Strong dependence on the vacancy
concentration

[112]

Graphene 1500–3500 Theory: BTE, third-order
IFCs

Strong size dependence [113]

FLG 1000–4000 Theory: BTE + RTA, γs(q) n = 8 − 1, strong size dependence [38]
FLG 1000–3500 Theory: BTE, third-order

IFCs
n = 5 − 1, strong size dependence [53]

FLG 2000–3300 Theory: BTE, third-order
IFCs

n = 4 − 1 [54]

FLG 580–880 Theory: MD simulation n = 5 − 1, strong dependence on the
van der Waals bond strength

[114]

GNR 1000–7000 Theory: molecular
dynamics, Tersoff

Strong ribbon width and edge
dependence

[59]

GNR ∼5500 Theory: BTE + RTA GNR with width of 5 μm; strong
dependence on the edge roughness

[81]

Aksamija and Knezevic [81] calculated the dependence
of the thermal conductivity of a GNR with the width
5 μm and RMS edge roughness � = 1 nm on temperature
(see figure 8). The thermal conductivity was calculated
taking into account the three-phonon umklapp, mass-defect
and rough edge scatterings [81]. The authors obtained RT
thermal conductivity K ∼ 5500 W mK−1 for the 5-μm-wide
suspended graphene ribbon. The study of the nonlinear
thermal transport in rectangular and triangular GNRs under
large temperature biases was reported in [107]. The authors
found that, in short (∼6 nm) rectangular GNRs, a negative
differential thermal conductance exists in a certain range
of the applied temperature difference. As the length of
the rectangular GNR increases the effect weakens. A
computational study reported in [108] predicted that the
combined effects of the edge roughness and local defects
play a dominant role in determining the thermal transport
properties of zigzag GNRs. The experimental data on thermal
transport in GNRs are very limited. In [109] the authors
used an electrical self-heating method and extracted the
thermal conductivity of sub-20 nm GNRs to be more than
1000 W mK−1 at 700–800 K. However, this study assumed
that the thermal resistance of the graphene–substrate interface
is the same as that of the carbon–substrate interface [109],

which is likely to have led to a higher value of K. A similar
experimental method but with more accurate account of the
GNRs’ thermal coupling to the substrate has been used
in [110]. Liao et al [110] found substantially lower values
of thermal conductivity of ∼80–150 W mK−1 at RT. The
calculated and measured data for the thermal conductivity of
graphene nanoribbons are also given in table 3. We would like
to note that the BTE and MD models used for calculations of
the thermal conductivity in graphene and GNRs depend on the
interatomic potentials while MD simulations are also sensitive
to the size of the simulation domains. The differences in the
potentials and domain sizes are some of the reasons for the
observed data scatter for the thermal conductivity in different
works.

9. Analysis of recent theoretical results

In this section we review and analyze the most recent
theoretical results pertinent to phonon transport in graphene.
Ong and Pop [115] examined thermal transport in graphene
supported on SiO2 using MD simulations. The approach
employed by the authors utilized the reactive empirical bond
order (REBO) potential to model the atomic interaction
between the C atoms, Munetoh potential to model the atomic
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Figure 8. Thermal conductivity results for graphene ribbon of
width W = 5 μm and RMS edge roughness � = 1 nm, showing
contributions from individual phonon branches TA, LA, ZA, and
ZO and total. Experimental data points from [35, 36] are shown for
comparison. Reproduced with permission from [81]. Copyright
2011 American Institute of Physics.

interactions between the Si and O atoms and Lennard-Jones
potential to model the van der Waals type C–Si and C–O
couplings. The authors suggested that thermal conductivity
in supported graphene is smaller by an order of magnitude
than that in suspended graphene due to damping of the
out-of-plane ZA phonons. Surprisingly, Ong and Pop [115]
found from their calculations that increasing the strength
of the graphene–substrate interactions further can enhance
the heat flow and effective thermal conductivity along the
supported graphene. The authors attributed this result to the
coupling of graphene ZA modes to the substrate Rayleigh
waves, which linearizes the phonon dispersion, increases
the group velocity of the hybridized modes and, thus,
enhances the thermal flux. One should note here that Seol
et al [49] concluded from their experiments and calculations
that graphene’s coupling to its substrate leads to additional
phonon scattering with the corresponding reduction of the
in-plane thermal conductivity of graphene. The comparison of
the computational [115] and experimental [49] results calls for
additional studies of thermal properties of graphene supported
on different substrates.

Qiu and Ruan [111, 116] addressed the problem of
relative contributions of ZA phonons to thermal transport
in the framework of the equilibrium MD simulations. Their
conclusion was that in suspended SLG out-of-plane ZA
phonons are coupled with in-plane phonons due to the
third-order and higher-order anharmonic interactions, which
results in about 25%–30% contribution of ZA phonons to
the thermal conductivity of graphene. In supported SLG
the contribution of all acoustic and ZO phonon branches
are reduced owing to the SLG–substrate interface scattering
and breakdown of the symmetries for both in-plane and
out-of-plane phonons. The contributions of ZA phonons to
thermal conductivity are suppressed more strongly than the
contributions of TA and LA phonons. Qiu and Ruan [111,
116] stated that the in-plane TA and LA phonons are the
dominant heat carriers in supported SLG and make a major
contribution in suspended SLG.

The strain effects on the thermal conductivity of graphene
and GNRs were studied computationally in [117]. The
authors used MD simulations and found that the thermal
conductivity of graphene is very sensitive to the tensile strain.
It was shown that when the strains are applied in both
directions—parallel and perpendicular to the heat transfer
path—the graphene sheets undergo complex reconstructions.
As a result, some of the strained graphene structures can
have higher thermal conductivity than that of SLG without
strain [117]. The suggested strong strain dependence of
the thermal conductivity of graphene can explain some of
discrepancies in the reported experimental values of the
thermal conductivity of suspended graphene. The suspended
graphene flakes and membranes are expected to have different
strain fields depending on the size and geometry of the
suspected graphene sample.

The strong dependence of the thermal conductivity of
graphene on the defect concentration was established in the
computational studies reported in [112, 118]. Both studies
used MD simulations. According to Hao et al [118], 2%
of the vacancies or other defects can reduce the thermal
conductivity of graphene by as much as a factor of five to
ten. Zhang et al [112] determined from their MD simulations
that the thermal conductivity of pristine graphene should
be ∼2903 W mK−1 at RT. According to their calculations
the thermal conductivity of graphene can be reduced by
a factor of 1000 at the vacancy defect concentration of
∼9%. The numeric results of [112, 118] suggest another
possible explanation of the experimental data scatter, which is
different defect densities in the examined graphene samples.
For example, if the measurements of the thermal conductivity
of graphene by the thermal bridge technique give smaller
values than those by the Raman optothermal technique, one
should take into account that the thermal bridge technique
requires a substantial number of fabrication steps, which result
in residual defects.

An intriguing question in the theory of phonon transport
in graphene is a relative contribution to heat conduction
by LA, TA and ZA phonon polarization branches. The
calculations of the thermal conductivity from BTE within
RTA [25, 94, 95, 119] or by using the three-phonon matrix
elements obtained from the LWA [76] show relatively
small—down to negligible—contributions of ZA phonons.
The latter is mainly attributed to the large (negative)
Grüneisen parameter, which defines the strength of phonon
scattering in anharmonic processes, and the small phonon
group velocity. However, there is an alternative description
of phonon transport in graphene. Lindsay, Broido, Mingo
and co-workers [49, 53, 113] reported the first calculations
of the thermal conductivity of graphene in the framework of
the linearized BTE and three-phonon matrix elements based
on the third-order interatomic force constants (IFCs). Their
calculations suggested that heat conduction is dominated by
the ZA phonons. The latter results from the mode-dependent
third-order IFCs and a special selection rule in ideal graphene,
which restricts the phase space for the phonon–phonon
scattering, thus increasing the ZA phonon lifetime. The
authors of [49, 53, 113] also emphasized the importance of the

12



J. Phys.: Condens. Matter 24 (2012) 233203 Topical Review

three-phonon normal processes for an accurate description of
the thermal conductivity of graphene and few-layer graphene.
However, for comparison with experimental data, one should
note that placing graphene on any substrate and the presence
of nanoscale corrugations in graphene lattice would break the
symmetry selection rule, thus allowing ZA phonons to scatter.
It is also possible that ZA dispersion undergoes modification,
e.g. linearization, due to the substrate coupling, as suggested
by Ong and Pop [115].

More recently, Singh et al [54, 120] followed the
theoretical approach of [53, 113] to determine the relative
contribution of the polarization branches, and analyze
the effect of different theoretical approximations used for
graphene [120], including the classical phonon statistics,
LWA and omission of the normal three-phonon processes.
Thermal conductivities calculated under various assumptions
were compared with that obtained from solving the linearized
BTE [120] with the phonon scattering strengths computed
using the anharmonic IFCs written as

�αβγ (0k, l′k′, l′′k′′) = ∂3V

∂uα(0k)∂uβ(l′k′)∂uγ (l′′k′′)
, (20)

where uα(lk) is the αth component of a displacement of the
kth atom in the lth unit cell and V = V(c1, c2, . . . , cN) is
the empirical interatomic potential. The number of constants
in a set (c1, c2, . . . , cN) depends on the type of interatomic
potential, while values of the constants are usually determined
from comparison of the calculated cohesive energy, phonon
energy or another measurable quantity with the experimental
data.

To determine �αβγ (0k, l′k′, l′′k′′), Singh et al [120]
employed the optimized Tersoff interatomic potential with
the set of parameters determined by Lindsay and Broido [69]
from the fitting of the phonon frequencies and the zone-center
group velocities. Nevertheless, the optimized Tersoff potential
gives a rather poor agreement with the available experimental
frequencies ω for ZO phonons near the � point (the difference
is about 80 rad ps−1 at the � point), ZO, LO and TA phonons
near the M point (the difference is about 40–50 rad ps−1 for
both phonons at the M point) and ZA, TA and LO phonons
near the K point (the difference is about 20 rad ps−1 for ZA,
40 rad ps−1 for TA and 100 rad ps−1 for LO phonons at
the K point) (see figure 1 from [69]). Moreover, the phonon
energies and group velocities of TA phonons, calculated using
this potential, are overestimated over half of the Brillouin
zone. The phonon energies were found as a solution of a set
of equations of motion which depends on the second-order
(harmonic) IFCs only (see equation (1) from [54]),

�αβ(0k, l′k′) = ∂2V

∂uα(0k)∂uβ(l′k′)
. (21)

Therefore, the calculation of the third-order IFCs �αβγ (0k,
l′k′, l′′k′′), which are important for the thermal transport and
for determining the relative contribution of LA, TA, ZA
phonons to the thermal conductivity, is not a well justified
procedure and can lead to inaccurate conclusions about the
importance of the phonon branches for heat conduction.

It is known that the elastic and vibration properties
depend strongly on the type of the empirical potential as
shown in many theoretical publications [121–124]. Broido
et al [121] demonstrated that the Tersoff and environment-
dependent interatomic potentials give vastly different thermal
expansion and Grüneisen coefficients. Cowley [122] analyzed
vibration properties of silicon using Stillinger–Weber and
Tersoff potentials and concluded that none of these potentials
provide a fully satisfactory description of the lattice
vibrations. Sevincli et al [123] demonstrated that LA and
TA modes in the hybrid boron nitride–graphene sheets are
equally well described by the Tersoff potential and the
fourth-nearest-neighbor force constants while the energies
of ZA, ZO, TO and LO phonons are not. The influence of
different interatomic potentials on the thermal conductivity
is discussed in [124]. The higher-order phonon processes can
also change the relative contributions of different phonons to
the thermal conductivity. In their classical MD simulations,
Qiu and Ruan [111, 116] predicted strong coupling of ZA
phonons with LA and TA phonons due to the higher-order
umklapp and normal processes with a corresponding increase
of their scattering. In their calculation, ZA phonons accounted
for 15% in the graphene on the substrate and ∼25%–30% in
the suspended SLG [111, 116].

For all the reasons discussed above, we consider the
question of the relative contributions of different phonon
polarizations to the thermal conductivity of graphene to
be still open. Experimentally, it is difficult to address this
question. Measurements of the temperature dependence of
the thermal conductivity cannot present evidence in favor
of one or the other phonon contribution because the K(T)

dependence in graphite is known to be strongly influenced
by the material quality [55, 125, 126]. One should note
here that despite the differences in the theoretical models
and assumptions the theoretical results obtained for the RT
thermal conductivity of graphene are relatively close. The RT
thermal conductivity of SLG found by Nika et al [38, 76]
using RTA and LWA is K ∼ 4000 W mK−1, which is close
to the results of Lindsay et al [53, 69, 113] found from BTE
with the optimized potentials: K = 3500 W mK−1 (Tersoff)
and K = 3600 W mK−1 (Brenner). Singh et al [54, 120],
who used a model similar to that of [53, 69, 113], obtained
K ∼ 3250 W mK−1.

10. Isotope effects on phonon transport in graphene

Naturally occurring carbon materials are made up of two
stable isotopes of 12C (∼99%) and 13C (∼1%). The change
in isotope composition modifies dynamic properties of crystal
lattices and affects their thermal conductivity. The isotopically
purified materials are characterized by enhanced thermal
conductivity [127–131]. The knowledge of isotope effects
on thermal properties is valuable for understanding phonon
transport. The isotope composition affects directly the phonon
relaxation rates in the phonon mass-difference scattering
processes. The phonon scattering rate on point defects, 1/τP,
is given as [25, 119] 1/τP ∝ V0(ω

α/υ
β
j )ϒ , where V0 is the

volume per atom in the crystal lattice, ϒ is the strength of the
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phonon–point defect scattering, and α = 3 (4) and β = 2 (3)

for a 2D (3D) system, respectively. In the perturbation theory
ϒ can be written as [25, 119]

ϒ =
∑

i

fi[(1 − Mi/M̄)2 + ε(γ (1 − Ri/R̄))2], (22)

where fi is the fractional concentration of the substitutional
foreign atoms, e.g. impurity, defect or isotope atoms, Mi
is the mass of the ith substitutional atom, M̄ = ∑

ifiMi is
the average atomic mass, Ri is the Pauling ionic radius of
the ith foreign atom, R̄ = ∑

ifiRi is the average radius and
ε is a phenomenological parameter. The mass of a foreign
atom—impurity, vacancy, defect or isotope—is well known,
while the local displacement �R = R̄ − Ri due to the atom
radius or bond-length difference is usually not known well.

One can see from equation (22) that the phonon–isotope
scattering is unique in the sense that, unlike impurity or defect
scattering, it involves only the well defined mass-difference
term, �M = M̄ − Mi, without the ambiguous volume or
bond-strength difference term, �R = R̄ − Ri or ε. As the
system dimensionality changes from 3D to 2D, the phonon
scattering on point defects undergoes additional modification
owing to the different phonon DOSs. The change in the
phonon DOS reveals itself via dependence of 1/τP on ω

and υ. Thus, the isotope effects in graphene are particularly
important for understanding its thermal properties and, more
generally, for development of theory of the phonon transport
in low-dimensional systems.

The first experimental study of the isotope effects
on the thermal properties of graphene was reported
just recently [132]. The isotopically modified graphenes
containing various percentages of 13C were synthesized by the
CVD technique [133, 134]. The regions of different isotopic
composition were parts of the same graphene sheet to ensure
uniformity in material parameters. The thermal conductivity
of the isotopically pure 12C (0.01% 13C) graphene,
determined by the optothermal Raman technique [18, 35, 36,
38, 41, 48], was higher than 4000 W mK−1 at the temperature
T ∼ 320 K, and more than a factor of two higher than the value
of K in a graphene sheet composed of a 50%–50% mixture of
12C and 13C.

Figure 9 shows thermal conductivity in the isotopically
modified graphene as a function of temperature. The evolution
of thermal conductivity with the isotope content was attributed
to the changes in the phonon–point defect scattering rate 1/τP
via the mass-difference term �M = M̄ − Mi. The phonon
υ and mass density do not undergo substantial modification
with the isotope composition. The relative change in the
phonon velocity υ12C/υnatural is related to the mass densities
of the respective lattices υ12C/υnatural = (Mnatural/M12C)1/2.
Removal of 1% 13C in natural diamond causes the velocity
to increase only by a tiny fraction, which cannot account for
the observed strong change in the thermal conductivity.

The reported experimental data in [132] agree well
with the authors’ own MD simulations, corrected for
the long-wavelength phonon contributions via the Kle-
mens model [132] and other numeric data reported
previously [76, 135, 136]. A recent study [137] reported

Figure 9. Thermal conductivity of the suspended graphene film
with 13C isotope concentrations of 0.01%, 1.1% (natural
abundance), 50% and 99.2%, respectively, as a function of the
temperature measured using the micro-Raman optothermal
technique. Note the strong dependence of thermal conductivity on
the isotope concentration. Reproduced with permission from [132].
Copyright 2012 Nature Publishing Group.

an analytical model and MD simulations of the isotope
effects in carbon materials, including nanoribbons. The
results of the calculations for the thermal conductivity
dependence on the isotope composition are in line with the
measurements [132]. It was also predicted theoretically that
further reduction in thermal conductivity of the isotopically
engineered graphene [138] could be achieved if the isotopes
were organized in small size clusters rather than being
distributed randomly [139]. These findings are in line with
those obtained for rectangular GNRs [140].

11. Conclusions

We have reviewed theoretical and experimental results
pertinent to 2D phonon transport in graphene. Phonons are
the dominant heat carriers in the ungated graphene samples
near room temperature. The unique nature of 2D phonons,
revealed in very large phonon MFP and peculiarities of
the density of states, translates to unusual heat conduction
properties of graphene and related materials. We analyzed
available computational data for the relative contributions of
different phonon polarization branches (LA and TA versus
ZA) to heat conduction. Uncertainties associated with various
assumptions made in calculation of thermal conductivity have
also been discussed. Recent computational studies suggest
that the thermal conductivity of graphene depends strongly on
the concentration of defects, strain distribution, sample size
and geometry. The revealed dependence can account for a
portion of the data scatter in reported experimental studies.
Investigation of the physics of 2D phonons in graphene can
shed light on the thermal energy transfer in low-dimensional
systems. The results presented in this review are important
for the proposed electronic and optoelectronic applications of
graphene, and may lead to new methods of heat removal and
thermal management.
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