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Engineering of the thermodynamic properties
of bilayer graphene by atomic plane rotations:
the role of the out-of-plane phonons

Alexandr I. Cocemasov,a,b Denis L. Nika*a,b and Alexander A. Balandin*a

We investigated theoretically the specific heat of graphene, bilayer graphene and twisted bilayer graphene

taking into account the exact phonon dispersion and density of states for each polarization branch. It is

shown that contrary to a conventional belief the dispersion of the out-of-plane acoustic phonons –

referred to as ZA phonons – deviates strongly from a parabolic law starting from the frequencies as low as

∼100 cm−1. This leads to the frequency-dependent ZA phonon density of states and the breakdown of

the linear dependence of the specific heat on temperature T. We established that ZA phonons determine

the specific heat for T ≤ 200 K while contributions from both in-plane and out-of-plane acoustic

phonons are dominant for 200 K ≤ T ≤ 500 K. In the high-temperature limit, T > 1000 K, the optical and

acoustic phonons contribute approximately equally to the specific heat. The Debye temperature for gra-

phene and twisted bilayer graphene was calculated to be around ∼1861–1864 K. Our results suggest that

the thermodynamic properties of materials such as bilayer graphene can be controlled at the atomic

scale by rotation of the sp2-carbon planes.

1. Introduction

The discovery of the unusually high thermal conductivity, K, of
suspended graphene and few-layer graphene (FLG)1–4 resulted
in a surge of interest in thermal properties of two-dimensional
(2-D) materials.5–15 The optothermal studies conducted with
the help of micro-Raman spectroscopy revealed the thermal
conductivity K ∼ 2000–5000 W mK−1 (depending on the
sample size and quality), near room temperature (RT) for the
large graphene samples suspended across trenches in SiO2

wafers1–4 or on the transmission electron microscopy (TEM)
grids.5,8 These values are above the bulk graphite limit of K =
2000 W mK−1 for basal planes at RT.1 A more recent study
using a different experimental technique – electrical thermal
bridge – of the residue-free suspended graphene also obtained
the thermal conductivity above the bulk graphite limit (K ∼
2430 W mK−1 at T = 335 K).15 Graphene samples supported on
substrates have lower thermal conductivity, e.g. K ∼ 600 W
mK−1 for graphene on Si/SiO2 at T = 300 K.6 However, even on
a substrate or when embedded in a matrix, FLG reveals higher

K as compared to thin films of comparable thickness made of
other materials.1,16

There is an inherent ambiguity in defining the thermal con-
ductivity of graphene in relation to the thickness value of the
atomic plane h (most of studies use h = 0.35 nm, which orig-
inates from the carbon–carbon bond length). Despite this
ambiguity and unavoidable experimental data scatter due to
different sizes and quality of the samples, there is a growing
consensus among theorists that the phonon thermal pro-
perties of graphene can be fundamentally different from those
of three-dimensional (3-D) bulk crystals.1,4,9–11,14,17–22 The
latter can be attributed to the 2-D nature of the phonon
density of states in graphene and the resulting exceptionally
long phonon mean free path (MFP) for the long wavelength
phonons. Recent theoretical studies suggested that graphene
samples with the 100 μm length19 or even 1 mm length20 are
required in order to recover the intrinsic thermal conductivity
of graphene. In both reports the K values were substantially
larger than the bulk graphite limit (K = 5800 W mK−1 at T =
300 K in ref. 19). The specifics of the phonon dispersion and
relative contributions of different phonon polarization are
important for gaining a complete understanding of thermal
properties of 2-D materials.

In this Letter, we report the results of our investigation of
the specific heat, cv, of single layer graphene (SLG), bilayer gra-
phene (BLG) and twisted bilayer graphene (T-BLG). This thermo-
dynamic characteristic can be determined rather accurately
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and it suffers less from the ambiguity of the phonon transport
characteristics. The focus of our present study is on elucidat-
ing the role of the out-of-plane phonons in determining the
specific heat in different temperature ranges and revealing the
influence of the 2-D phonon density of states (PDOS). In
addition to a numerical solution we also provide a simple
analytical formula for calculating cv(T ) for graphene, BLG and
T-BLG with parameters extracted from the Born–von Karman
model of the lattice vibrations. We have earlier proposed a
possibility of engineering phonon dispersion and material pro-
perties by twisting of the atomic planes in T-BLG.23,24 The first
experimental studies of heat conduction in suspended T-BLG
confirmed that twisting substantially reduces K owing to the
increased scattering phase space available for phonons in
T-BLG as compared to the Bernal-stacked BLG.25 In this Letter
the approach for controlling phonon properties at the atomic
level by rotating sp2 carbon planes is treated in a broader
context. Knowledge of the specific heat and Debye temperature
of SLG, BLG and T-BLG is important for practical applications
of these materials as fillers in thermal pastes26–29 and thermal
graphene laminate coatings.16,30–33

2. Phonon density of states in SLG,
BLG and T-BLG

It is known that SLG reveals four in-plane phonon branches:
transverse/longitudinal acoustic (TA/LA) and optic (TO/LO)
branches with the atomic displacements in the graphene
plane, and two out-of-plane acoustic (ZA) and optic (ZO)
branches with the displacements perpendicular to the gra-
phene plane. The in-plane acoustic branches are characterized
by the linear energy dispersions over most part of the Brillion
zone (BZ) except near the zone edge while the out-of-plane ZA
branch demonstrates a quadratic dispersion near the zone
center q = 0, where q is the phonon wavenumber. The number
of phonon branches in BLG is doubled: six additional
branches possess non-zero frequency at q = 0 and at low fre-
quencies they are affected by inter-layer interactions.3,10,22,23

The emergence of many folded hybrid phonon branches in
T-BLG was explained by the change of the unit cell size and a
corresponding modification of the reciprocal space geometry.
The number of polarization branches and their dispersion in
T-BLG depend strongly on the rotation angle.23

We determine PDOS in SLG, BLG and T-BLG using the
phonon dispersions calculated in the framework of the lattice
dynamics theory. For the intralayer carbon–carbon interaction
we use the Born–von Karman (BvK) force constant approach.23

For the interlayer interaction we use the spherically symmetric
interatomic potential with the following components of the
force constant matrices: Φij

αβ = −δ(rij)rijαrijβ/(rij)2, where δ is the
force constant of the interlayer coupling;~rij is the vector connect-
ing a pair of interacting atoms (i,j ); α and β designate the com-
ponents of the Cartesian coordinates. Since the van der Waals
coupling strength between the graphene layers is very weak we
model the dependence of the force constant δ on rij as: δ(rij) =

A exp(−rij/B) with two fitting parameters A = 573.76 N m−1 and
B = 0.05 nm,24 determined by comparison with the experimental
phonon frequencies from the Γ–A direction in graphite.34

Twisted bilayer graphene can be generated from BLG by
rotating, i.e. twisting, one layer relative to another by an angle
θ in the graphene plane (see Fig. 1(a)). A set of T-BLGs with
different rotational angles and commensurate crystal lattice,
i.e. lattice possessing a translational symmetry, are determined
by the following relation:35 cos θ(p,n) = (3p2 + 3pn + n2/2)/(3p2 +
3pn + n2), where p and n are coprime positive integer numbers.
The number of atoms in a unit cell of T-BLG depends on θ and
it is given by the relationship: N = 4(3p2 + 3pn + n2), if n is not
divisible by 3.23,24 For example, the unit cell of the T-BLG with
θ(2,1) = 13.2° contains 76 atoms and its BZ is 19 times smaller
than that of BLG without a rotation (see Fig. 1(b) for BZ sche-

Fig. 1 (a) Twisted bilayer graphene schematics. (b) Brillouin zones of
SLG (blue or yellow hexagon) and T-BLG with 13.2° rotation (green
hexagon). Γ, M and K denote high-symmetry points of T-BLG BZ.
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matics). A detailed description of the theoretical approach for
calculating the phonon modes in SLG, BLG and T-BLG was
reported by us recently elsewhere.23,24 Here we use this
approach for the investigation of the polarization branch
dependent PDOS.

The 2D phonon density of states per unit surface area for
SLG and FLG is given by:

gðωÞ ¼
X
s

gsðωÞ; gsðωÞ ¼ 1
4π2

X
qxðs;ωÞ

X
qyðs;ω;qxÞ

Δqx
υyðqx; qy; sÞ
�� ��: ð1Þ

Here ω is the phonon frequency, s enumerates phonon
branches (polarizations), gs(ω) is the polarization-dependent
phonon density of states, qx and qy are components of the 2D
phonon wave vector, υy = ∂ω/∂qy is the y-component of the
phonon group velocity, and Δqx is the interval between two
neighboring qx points. In order to determine g(ω) from eqn (1)
we calculated ωs(qx,qy)in 40 000 points (qx,qy) (200 × 200 grid)
uniformly distributed over a 1/4th part of the BZ, shown as a
green segment in Fig. 1 for T-BLG with a 13.2° rotation.
We checked that increasing the number of points by a factor of
4 does not change the numerical results. Our analysis also
showed that 22 500 BZ points (150 × 150 grid) is already
sufficient for convergence and obtaining accurate results
for PDOS.

The PDOS for LA, TA and ZA branches in graphene can be
derived analytically in the isotropic approximation of the
linear frequency dispersion for LA and TA branches ωLA,TA(q) =
υLA,TA × q and quadratic dispersion for the ZA branch ωZA(q) =
α × q2 in the entire BZ, where υLA(υTA) is the q-independent
group velocity and α is a parameter. In this approximation the
PDOS per unit surface area takes the form:

gisotLA;TAðωÞ ¼
ω

2πυ2LA;TA
; gisotZA ðωÞ ¼ 1

4πα
: ð2Þ

The phonon energy dispersion along the Γ–M direction of
BZ is shown in Fig. 2 for SLG (panel a), BLG (panel b)
and T-BLG with 13.2° rotation (panel c). The red triangles
indicate the experimental phonon frequencies of graphite,
reproduced from ref. 36. One can conclude that our lattice
dynamics model provides a good agreement between the
theoretical and experimental phonon frequencies. The dis-
persion of the ZA branch in SLG and BLG can be divided into
two distinctive regions: (I) region with the quadratic dis-
persion q < 5.2 nm−1 and (II) region with almost linear dis-
persion 5.2 nm−1 < q < 13.0 nm−1. Therefore we can improve
eqn (2) for ZA PDOS accounting for both quadratic and linear
dispersion regions:

gisotZA ðωÞ ¼ 1
4πα

Θðω� ωcÞ þ ω

2πυ2ZA
Θðωc � ωÞ; ð3Þ

where ωc is the phonon frequency separating region (I) from
region (II), Θ is the Heaviside’s step function and υZA is the vel-
ocity of ZA modes in region II.

In Fig. 3 we analyze partial contribution of LA (green), TA
(blue), ZA (red) and ZO (magenta) branches to the total PDOS

(solid black) for SLG. There are 7 pronounced peaks in the
PDOS curve. The peaks at 452, 605 and 638 cm−1 are associ-
ated with ZA, TA and ZO phonons at the BZ edge, correspond-
ingly. The peak frequency of LA branch ∼1192 cm−1 is smaller
than the LA phonon frequency at M point ∼1287 cm−1 (see
Fig. 2(a)). The main contributors to this peak are the low-vel-
ocity phonons from the directions near the BZ edge. The PDOS
peak at 889 cm−1 is related to the ZO phonon at the BZ center
(Γ-point), while TO and LO phonons at the BZ center and the

Fig. 2 Phonon dispersion along the Γ–M crystallographic direction in:
(a) single-layer graphene, (b) AB-stacked bilayer graphene and (c)
twisted bilayer graphene with 13.2° rotation. The red triangles denote
experimental phonon frequencies of graphite from ref. 36.
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BZ edge are responsible for peaks at 1350 and 1585 cm−1. In
the case of AB-stacked BLG all phonon branches except ZA
become nearly doubly degenerated over the entire BZ and the
intensity of PDOS is by a factor of ∼2 larger than in SLG (see
the dashed black line in Fig. 3). The new peak at 91 cm−1 also
appears in AB-BLG. This peak is associated with the ZA2

phonon at the Γ-point (see Fig. 2(b)). In T-BLG the frequency
of the ZA2 phonon at the Γ-point depends on the angle of
rotation due to the changes in the interlayer coupling,23 while
the overall g(ω) remains the same as for AB-BLG with a slightly
shifted ZA2 peak. For example, the ZA2 peak shifts to
89.3 cm−1 for T-BLG with 13.2° rotation and to 89.5 cm−1 for
T-BLG with 21.8° rotation.

In Fig. 4(a) we compare the accurate LA, TA and ZA PDOS in
SLG calculated from eqn (1) (solid lines) with those obtained
in the isotropic approximation using eqn (2) and (3)
(dashed lines). The parameters of the isotropic approximation
were extracted from the actual phonon dispersions: υTA =
13.5 km s−1, υLA = 20.4 km s−1, υZA = 7.9 km s−1, α = 0.62 ×
10−6 m2 s−1 and ωc = 90 cm−1. At small energies both sets of
the curves almost coincide. The rise of the phonon energy
leads to the increasing difference between the curves due to
deviation of LA/TA dispersion from the linear law and ZA dis-
persion from the quadratic law. It is evident from Fig. 4(a),
that the high PDOS peaks cannot be described by the isotropic
analytical expressions of eqn (2) and (3), and the deviation
from the accurate PDOS curves become significant for the fre-
quencies above ∼250 cm−1 for ZA, ∼300 cm−1 for TA and
∼600 cm−1 for LA polarizations. The strong influence of non-
parabolicity of the ZA branch on ZA PDOS is illustrated in
Fig. 4(b). We show ZA PDOS as a function of the phonon fre-
quency for two cases: (1) a small segment near the BZ center is
described by the isotropic and parabolic dispersions while in
the rest of BZ the PDOS is calculated using the actual phonon
dispersion obtained from BvK model of lattice vibrations
(anisotropic and non-parabolic ZA dispersion), and (2) a small

segment near the BZ center is anisotropic while the rest is iso-
tropic, which is opposite to case (1).

The difference between the two cases is only in the phonon
dispersions used. Both g(ω) curves were calculated from eqn
(1). In the frequency range where the dispersion is parabolic, g
(ω) should be constant and equal to 1/(4πα) (see eqn (2)). The
maximum ZA phonon frequency in the small segment near
the BZ center, shown as a white tetragon in Fig. 4, is
∼100 cm−1 and is almost the same for the parabolic and BvK
dispersions. Both g(ω) curves (red and blue) are practically
independent of ω up to ∼90 cm−1 and coincide with the
dashed line ω = 1/(4πα). Therefore, one can conclude that in
the region of the phonon wave vectors not far from the BZ
center (ω < 90 cm−1) the ZA BvK phonon dispersions are
almost parabolic and isotropic. For higher phonon frequencies
the difference between the two curves reinforces due to the
strong anisotropy and non-parabolicity of the ZA branches.

The Debye temperature is one of the most important para-
meters describing the thermal properties of solids. We can

Fig. 3 Total phonon density of states in SLG (solid black) and AB-BLG
(dashed black), and contributions from ZA (red), TA (blue), ZO (magenta)
and LA (green) phonon branches.

Fig. 4 (a) LA, TA and ZA PDOS calculated from eqn (1), using actual
phonon dispersions (solid lines) and obtained in the isotropic model
from eqn (2) and (3) (dashed lines). (b) ZA phonon density of states in
SLG as a function of phonon frequency calculated using different sets of
phonon dispersions.
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estimate the Debye temperature in SLG, BLG and T-BLG, using
eqn (1)–(3). In the Debye model the total number of phonon
states NS is given by:

NS ¼ A
X

s¼LA;TA;ZA

ðωD

0
gisots ðωÞdω ¼ AðR1ω

2
D þ R2Þ; ð4Þ

where A is the surface area, R1 ¼
P

s¼LA;TA;ZA
1= 4πυ2s

� �
and

R2 ¼ ωc

4πα
1� αωc

υ2ZA

� �
. Summation in eqn (4) is performed over

all acoustic branches. The contribution from the optical
phonons is assumed to be zero in the Debye model. Using real
PDOS, described by eqn (1), NS takes the form:

NS ¼ A
X
s

ðωs;max

ωs;min

gsðωÞdω: ð5Þ

Here s enumerates both the acoustic and optical phonon
branches. From eqn (4) and (5) one can calculate Debye’s fre-
quency as:

ωD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
s

ðωs;max

ωs;min

gsðωÞdω� R2

R1

vuuut
: ð6Þ

From eqn (6) we estimated the Debye frequency in SLG,
BLG and T-BLG. The Debye frequency is extremely high in all
cases and differs rather weakly in SLG, BLG and T-BLG:
ωD(SLG) = 1294.1 cm−1, ωD(BLG) = 1293.7 cm−1 and ωD(T-BLG)
= 1295.7 cm−1, respectively. The weak dependence of ωD on
the number of atomic layers and twisting is an expected
result since the main difference between phonon properties
of SLG, BLG and T-BLG is due to ZA modes with frequencies
ω ≪ ωD. These modes are completely populated at tempera-

tures much lower than the Debye temperature TD = ħωD/kB,
where kB and ħ are Boltzmann’s and reduced Planck’s con-
stants, respectively; TD(SLG) = 1862 K, TD(BLG) = 1861 K and
TD(T-BLG) = 1864 K. These values of TD exceed those for most
of the materials and are only slightly smaller than TD of
diamond ∼2000 K.37

For comparison, in Table 1 we provide values of TD for
graphite and graphene available in the literature. The separate
in-plane and out-of-plane Debye temperatures were calculated
from the Debye frequencies using eqn (6) by summation over
the in-plane or out-of-plane branches, respectively. The
obtained values are in the same range as those calculated for
graphite and graphene in ref. 41 and 44 using the lattice
dynamics41 and Green’s function theory.44 At the same time,
the smaller values of TD = 1495 K and 1045 K were estimated
experimentally in ref. 42 and 43. We attribute the discrepancy
between the theoretical and experimental data to the variations
in the contribution of the out-of-plane phonons due to the
specific conditions of the experiments.42,43 For example, authors
of ref. 43 assumed that the weak interlayer bonds between gra-
phene and ruthenium substrate modes effectively scatter the
impinging He atomic beam when collecting diffraction spectra.

To analyze the influence of the selected inter-layer atomic
potentials on the obtained results we performed calculation of
PDOS and Debye’s temperatures using the Lennard-Jones (LJ)
interatomic potential. Although this potential underestimates
the phonon energies of bulk graphite in the Γ–A BZ direc-
tion,24 the effect on both PDOS and Debye’s temperature is
weak. For instance, using LJ potential we obtained the follow-
ing values of Debye’s temperatures in T-BLG (13.2°), which are
very close to those obtained using spherically-symmetric
potential (see Table 1): TD,LJ(in-plane) = 2672 K and TD,LJ(out-
plane) = 1293 K.

Table 1 Debye’s temperatures in graphene, few-layer graphene and graphite

TD (K) Comment Ref.

Graphite 1860 Theory: projector augmented wave method + local density approximation 38
2300 (in-plane) Theory: from fitting the thermal expansion coefficient to experimental data 39
800 (out-of-plane)

2300 (in-plane) Theory: from fitting the thermal expansion coefficient to experimental data 40
800 (our-of-plane)

2500 (in-plane) Theory: lattice dynamics; from fitting the specific heat to experimental data 41
950 (out-of-plane)

Graphene 1495 Experiment: suspended and supported 42
1045 Experiment: supported 43
2300 (in-plane) Theory: green functions 44
1287 (out-of-plane)
1862 Theory: BvK lattice dynamics; from PDOS comparison This work
2669 (in-plane)
1292 (out-of-plane)

BLG 1861 Theory: BvK lattice dynamics; from PDOS comparison This work
2675 (in-plane)
1295 (out-of-plane)

T-BLG (13.2°) 1864 Theory: BvK lattice dynamics; from PDOS comparison This work
2671 (in-plane)
1293 (out-of-plane)
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3. Specific heat of SLG, BLG and
T-BLG: impact of PDOS

The phonon density of states is a key parameter determining
the phonon-assisted processes in graphene and related
materials. Knowing the frequency distribution of the polariz-
ation-specific PDOS we can address particularly interesting
questions: (1) how the phonons of different polarizations
determine the functional dependence of phonon specific heat
on the temperature and (2) how this dependence changes
while going from SLG to BLG and from BLG to T-BLG? The
phonon specific heat at a constant volume cV is given by the
following expression:45,46

cV ðTÞ ¼
X
s

cs;V ðTÞ; cs;V ðTÞ

¼ 3NA

kBT2

ðωs;max

ωs;min

exp
ℏω
kBT

� �

exp
ℏω
kBT

� �
� 1

� 	2 ½ℏω�2fsðωÞdω; ð7Þ

where ωs,min(ωs,max) is the minimum (maximum) phonon
frequency for the s-th branch, s enumerates phonon branches,
T is the temperature, NA is the Avogadro constant,
fsðωÞ ¼ gsðωÞ=

P
j

Ð ωj;max

ωj;min
gjðωÞdω is the two-dimensional normal-

ized PDOS and cs,V is the contribution to total specific heat
from the s-th branch. Analyzing eqn (7) one can conclude that
in the isotropic case of parabolic ZA dispersion ωZA ∼ q2 and
in the case of linear LA/TA dispersions ωLA,TA ∼ q, leading to
gZA(ω) = const and gLA,TA(ω) ∼ ω, the low-temperature specific
heat cZA,V demonstrates the linear dependence on T, while
cLA,V(cTA,V) scales with temperature as T2. At very low temperatures,
ZA phonons are mostly populated and cV is proportional to T.
Such temperature dependence of specific heat was reported in
ref. 47 for T < 100 K. Alofi and Srivastava48 have theoretically
shown that a slight deviation from the linear T dependence
occurs due to LA and TA phonon contribution, and cV ∼ T1.1

up to 100 K. However, we have recently established24 that the
anisotropy in the phonon dispersions significantly influences
the temperature dependence of specific heat in SLG: cV ∼ T for
T ≤ 15 K; cV ∼ T1.1 for 15 K < T ≤ 35 K; cV ∼ T1.3 for 15 K < T ≤
35 K and cV ∼ T1.6 for 75 K < T ≤ 240 K. For BLG and T-BLG
with 21.8° rotation the dependences cV ∼ T1.3 and cV ∼ T1.6

were revealed correspondingly for T < 15 K. These results
require a detailed analysis of the interplay between the accu-
rate phonon energy spectra, PDOS and specific heat, which
has not been performed to date.

In Fig. 5(a) the temperature dependences of the phonon
specific heat cs,V in SLG are shown for different phonon
branches: ZA (red), TA + LA (blue) and ZO + TO + LO (green).
The contribution of ZA phonons to cV is dominant up to T ≈
200 K. Nevertheless, both cZA,V and cV demonstrate deviation
from the linear T-dependence beginning from T ≈ 15 K. This
is a clear manifestation of the anisotropy and non-parabolicity
of ZA dispersions. The power index m of Tm-dependence of the

specific heat increases faster for total cV than for cZA,V due to the
contributions from LA and TA phonons revealing cLA,V(cTA,V) ∼
T2 dependence for T < 100 K. The contribution of the in-
plane phonons to the total cV increases with temperature and
becomes comparable to that of ZA phonon contribution for T
≈ 250–300 K. This result differs substantially from what is pre-
dicted in the framework of the semi-continuum theory for
phonon dispersion where the ratio cZA,V/(cLA,V + cTA,V) ∼ 2 was
reported for T = 300 K,48 which was obtained assuming con-
stant PDOS for ZA phonons and linear PDOS for LA and TA
phonons. The latter illustrates that the simplified isotropic
models for PDOS in graphene do not capture all the character-
istics of the specific heat and thermal conductivity. For temp-
eratures T ≥ 300 K the contribution of the in-plane acoustic
phonons to cV is larger than that of ZA phonons. The ratio
between their contributions (cLA,V + cTA,V)/cZA,V increases from
∼1 at T = 300 K to ∼1.8 at T = 1000 K. The contribution from
optic phonons cop,V = cLO,V + cTO,V + cZO,V is very small (<10%)

Fig. 5 Phonon branch dependent heat capacity as a function of temp-
erature in SLG (a) and T-BLG with 13.2° rotation (b). In the panel (a) the
contributions from different branches are denoted as follows: ZA (red),
TO + LO + ZO (green), TA + LA (blue). In the panel (b) the red and blue
lines denote contributions from the out-of-plane and in-plane phonons,
respectively for SLG (solid curves) and 13.2° T-BLG (dashed curves). In
both panels the black curves correspond to the total phonon heat
capacity.
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up to T ≈ 180 K due to the low population of these modes.
However, their contribution to cV increases quickly with tempera-
ture: at RT it constitutes ∼23%, at T = 500 K it is ∼36%, while
at T = 1000 K it is ∼46%.

In Fig. 5(b) we illustrate the contribution from the out-of-
plane (red lines) and in-plane (blue lines) phonon modes to
the total phonon specific heat of SLG (solid lines) and T-BLG
with 13.2° rotation (dashed lines) as a function of tempera-
ture. The black lines denote the temperature dependence of
the total phonon heat capacity in SLG and T-BLG. The
specific heat of the out-of-plane phonons varies with temp-
erature as Tm, where m = 1 for SLG and m = 1.3 for T-BLG at T
< 15 K. The difference in p is explained by the specifics of the
folded phonons in T-BLG (see Fig. 2(c)). In general, the dis-
persion relations of the “additional” acoustic phonons
(denoted as ZA2 in the case of non-twisted BLG (see Fig. 2(b))
cannot be described by a parabolic law, even at the phonon
wave vectors near the BZ center. As a result both p(T-BLG) =
1.3 and p(AB-BLG) = 1.6 (not shown in Fig. 5) are larger
than p(SLG). The contribution from the in-plane polariz-
ations to cV also differs in SLG and T-BLG. At low T in SLG
cV(T ) ∼ T2, while in T-BLG cV(T ) ∼ T2.3. This deviation is also
due to the appearance of the additional phonon branches in
T-BLG with the dispersion relationship different from those
in SLG.

The results for T-BLG with the rotational angles other than
13.2° (not shown in Fig. 5) are quite similar, because the
difference in the absolute values of the total phonon heat
capacity for different BLG configurations at temperatures
above 5 K is less than 5% and decreases fast with increasing
temperature.24 The low-temperature specific heat of graphite
follows the cubic law cV(T ) ∼ T3 due to the three-dimensional
density of states, thus increasing the number of graphene
layers should increase the power factor m in cV(T ) ∼ Tm

dependence.
The accurate dependence of the specific heat of SLG, BLG

and T-BLG on temperature can be adequately approximated
by a parabolic function cV(T ) = aT + bT2, where a and b are
constants. The extracted values of these constants for two
regions of the temperature T < 150 K and 200 K ≤ T ≤ 350 K
are presented in Table 2. In the case of BLG and T-BLG the
values of parameters a and b are close, a(BLG) ≈ a(T-BLG),

b(BLG) ≈ b(T-BLG), and strongly differ from those of SLG. At
low temperatures T < 150 K, the ratio b/a in BLG/T-BLG is by a
factor of ∼6.5 larger than that in SLG, indicating a stronger
deviation of BLG/T-BLG ZA dispersions from the parabolic
law. The difference between the b/a ratios in SLG and
BLG/T-BLG practically disappears at higher temperatures of
200 K ≤ T ≤ 350 K: b/a (SLG) ∼ 0.0018 K−1 and b/a(BLG/
T-BLG) ∼ 0.0019 K−1, where the relative contribution of ZA
modes to the specific heat decreases.

4. Discussion: controlling phonons at
the atomic scale

The obtained results show that ZA phonons dominate the
specific heat for T ≤ 200 K while their contribution becomes
comparable to that of LA and TA phonons in the temperature
range 200 K ≤ T ≤ 500 K. In this sense, the out-of-plane
vibrations, which resemble standing waves, are efficient in
storing thermal energy. However, this does not imply that
ZA phonons make the dominant contribution to the thermal
conductivity. In the kinetic theory, the phonon thermal conduc-
tivity can be written as K ∼ cVVΛ, where V is the phonon
group velocity, Λ = Vτ is the phonon MFP and τ is the combined
relaxation time of the phonons. The thermal conductivity,
particularly near RT, is affected strongly by the phonon group
velocity (defined by the slopes of the dispersion branches)
and phonon scattering due to inharmonicity of the crystal
lattice and defects. The question of the relative contribution of
ZA, LA and TA phonons in different temperature ranges
and under different conditions (e.g. supported graphene vs.
suspended) is a subject of interesting theoretical
debates.4,10,11,21,49–52 No conclusive experimental evidence has
so far been provided.

We have earlier proposed a possibility of controlling heat
flow by engineering phonon dispersion in T-BLG.23,53 The
initial experimental studies of thermal conductivity suspended
T-BLG performed using the optothermal technique confirmed
that twisting substantially reduces K as compared to BLG.25

The fundamental difference of phonon engineering by twisting
from earlier approaches that involved phonon confinement in
acoustically mismatched nanostructures, e.g. conventional
quantum wells and nanowires,53–58 is a possibility of control-
ling not only acoustic phonons but optical phonons as well.
The twisting of atomic planes results in breaking the unit cells
and reducing BZ, which results in the phonon dispersion
modification all the way to the optical branch (see Fig. 2(c)).
Our present results indicate that SLG, BLG and T-BLG have dis-
tinguishably different cV temperature dependence that can be
traced to the PDOS of individual polarization branches. These
dependences, which we provided in the analytical form as
well, may help in future experimental studies. The possibility
of engineering of the acoustic and optical phonon dispersion
can be useful for energy storage and thermal management
applications.29

Table 2 Constants of parabolic functions aT + bT2 approximating
specific heat in SLG, BLG and 13.2° T-BLG

a (×10−3 J K−2 mol−1) b (×10−5 J K−3 mol−1)

T < 150 K
SLG 11.87 7.21
BLG 3.641 13.85
13.2° T-BLG 3.494 13.84

200 K ≤ T ≤ 350 K
SLG 19.12 3.42
BLG 18.56 3.57
13.2° T-BLG 18.36 3.6
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5. Conclusions

We theoretically investigated the phonon density of states for
different phonon branches in single-layer, bilayer and twisted
bilayer graphene in the framework of the Born–von Karman
model. The density of states for LA, TA and ZA phonons have
been compared with those obtained in the simplified isotropic
model with the linear dispersion for LA and TA branches and
quadratic dispersion for the ZA branch. Our results show that
the isotropic model describes well only the low-frequency part
of PDOS with ω < 250 cm−1 for ZA, ω < 300 cm−1 for TA and ω

< 600 cm−1 for LA modes. The deviation of the out-of-plane
acoustic phonon dispersions from the parabolic law breaks
the linear dependence of the specific heat on temperature:
in SLG cV(SLG) ∼ T only for T < 15 K, while specific heat of
BLG and T-BLG demonstrates Tn dependence with n > 1 even
at small temperatures ∼1 K. The partial contribution of the
different phonon branches to specific heat is a function of
temperature: at T < 200 K the main contributors are ZA
phonons; in the range 200 K–500 K, specific heat is deter-
mined by LA, TA and ZA phonons, while at T > 500 K the con-
tribution of optic phonons exceeds 35%. We have found that
T-dependence of the heat capacity in SLG, BLG and T-BLG can
be approximated by a function aT + bT2 at T < 350 K and have
determined parameters a and b by fitting the accurate cV(T )
curves. The presented results confirm that the accurate
phonon density of states is required for both qualitative and
quantitative description of the specific heat of SLG, BLG and
T-BLG. The dominance of ZA phonons in determining the
specific heat for T ≤ 200 K does not imply their leading role in
heat conduction, which depends on the phonon mean free
path as well. Our results indicate that the thermodynamic
properties of bilayer graphene can be controlled at the atomic
scale by rotation of the atomic planes.
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